UAV Imaging of a Martian Brine Analogue Environment in a Fluvio-Aeolian Setting

ng and execution. The use of UAVs for temporal monitoring of such salt flats can improve our knowledge about nutrient transport across the salt flat mixing zones, precise modeling of ecological vulnerability, and mineralogical estimations. Such high-resoluti

[1]  S. Silvestri,et al.  Hyperspectral remote sensing of salt marsh vegetation, morphology and soil topography , 2003 .

[2]  Stefan W. Maier,et al.  Efficiency of Individual Tree Detection Approaches Based on Light-Weight and Low-Cost UAS Imagery in Australian Savannas , 2018, Remote. Sens..

[3]  A. McEwen,et al.  Geologic context of recurring slope lineae in Melas and Coprates Chasmata, Mars , 2016 .

[4]  M. Caetano,et al.  Combined Uses of Supervised Classification and Normalized Difference Vegetation Index Techniques to Monitor Land Degradation in the Saloum Saline Estuary System , 2014 .

[5]  John D. Rummel,et al.  Special regions in Mars exploration: Problems and potential , 2006 .

[6]  Joseph S. Levy,et al.  Hydrological characteristics of recurrent slope lineae on Mars: Evidence for liquid flow through regolith and comparisons with Antarctic terrestrial analogs , 2012 .

[7]  A. Bhardwaj,et al.  Martian slope streaks as plausible indicators of transient water activity , 2017, Scientific Reports.

[8]  C. Hugenholtz,et al.  Remote sensing of the environment with small unmanned aircraft systems ( UASs ) , part 1 : a review of progress and challenges 1 , 2014 .

[9]  R. Barbieri,et al.  Continental evaporites and the search for evidence of life on Mars , 2011 .

[10]  O. Aharonson,et al.  Diffusion barriers at Mars surface conditions: Salt crusts, particle size mixtures, and dust , 2008 .

[11]  Anshuman Bhardwaj,et al.  UAVs as remote sensing platform in glaciology: Present applications and future prospects , 2016 .

[12]  F. Schmidt,et al.  Formation of recurring slope lineae on Mars by rarefied gas-triggered granular flows , 2017, 1802.05018.

[13]  WhiteheadKen,et al.  Remote sensing of the environment with small unmanned aircraft systems (UASs), part 1: a review of progress and challenges1 , 2014 .

[14]  Christophe Delacourt,et al.  Potential of UAVs for Monitoring Mudflat Morphodynamics (Application to the Seine Estuary, France) , 2016, ISPRS Int. J. Geo Inf..

[15]  T. Michaels,et al.  Observations and modeling of northern mid-latitude recurring slope lineae (RSL) suggest recharge by a present-day martian briny aquifer , 2016 .

[16]  I. Moore,et al.  Digital terrain modelling: A review of hydrological, geomorphological, and biological applications , 1991 .

[17]  Arko Lucieer,et al.  Time Series Analysis of Landslide Dynamics Using an Unmanned Aerial Vehicle (UAV) , 2015, Remote. Sens..

[18]  A. Bhardwaj,et al.  Revisiting Enigmatic Martian Slope Streaks , 2019, Eos.

[19]  Francesco Carlo Nex,et al.  Using UAVs for map creation and updating. A case study in Rwanda , 2018 .

[20]  J. Head,et al.  Brine formation via deliquescence by salts found near Don Juan Pond, Antarctica: Laboratory experiments and field observational results , 2017 .

[21]  M. Kalacska,et al.  Structure from motion will revolutionize analyses of tidal wetland landscapes , 2017 .

[22]  Vincent G. Ambrosia,et al.  Unmanned Aircraft Systems in Remote Sensing and Scientific Research: Classification and Considerations of Use , 2012, Remote. Sens..

[23]  C. Thorne,et al.  Quantitative analysis of land surface topography , 1987 .

[24]  J. Subandriyo,et al.  VERIFICATION OF PISCES DISSOLVED OXYGEN MODEL USING IN SITU MEASUREMENT IN BIAK, ROTE, AND TANIMBAR SEAS, INDONESIA , 2017 .

[25]  F. Nex,et al.  UAV for 3D mapping applications: a review , 2014 .

[26]  J. Head,et al.  Slope streaks in the Antarctic Dry Valleys: Characteristics, candidate formation mechanisms, and implications for slope streak formation in the Martian environment , 2007 .

[27]  María-Paz Zorzano,et al.  Are Slope Streaks Indicative of Global‐Scale Aqueous Processes on Contemporary Mars? , 2019, Reviews of Geophysics.

[28]  N. Thomas,et al.  Desiccation of phyllosilicate-bearing samples as analog for desiccation cracks on Mars: Experimental setup and initial results , 2015 .

[29]  Peter Dartnell,et al.  End of the chain? Rugosity and fine-scale bathymetry from existing underwater digital imagery using structure-from-motion (SfM) technology , 2016, Coral Reefs.

[30]  Rajesh Kumar,et al.  Remote sensing flow velocity of debris-covered glaciers using Landsat 8 data , 2016 .

[31]  F. Risacher,et al.  Origin of Salts and Brine Evolution of Bolivian and Chilean Salars , 2009 .

[32]  Vanni Nardino,et al.  Estimation of canopy attributes in beech forests using true colour digital images from a small fixed-wing UAV , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[33]  R. Tateishi,et al.  Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt , 2007 .

[34]  T. Michaels,et al.  New observations of martian southern mid-latitude recurring slope lineae (RSL) imply formation by freshwater subsurface flows , 2014 .

[35]  Nicolas Thomas,et al.  Seasonal Flows on Warm Martian Slopes , 2011, Science.

[36]  Thomas P. Kersten,et al.  Image-Based Low-Cost Systems for Automatic 3D Recording and Modelling of Archaeological Finds and Objects , 2012, EuroMed.

[37]  A. Bhardwaj,et al.  Heterogeneity in topographic control on velocities of Western Himalayan glaciers , 2018, Scientific Reports.

[38]  Mritunjay Kumar Singh,et al.  High resolution DEM generation for complex snow covered Indian Himalayan Region using ADS80 aerial push-broom camera: a first time attempt , 2015, Arabian Journal of Geosciences.

[39]  K. Anderson,et al.  Future climate warming and changes to mountain permafrost in the Bolivian Andes , 2016, Climatic Change.

[40]  S. Tulaczyk,et al.  An englacial hydrologic system of brine within a cold glacier: Blood Falls, McMurdo Dry Valleys, Antarctica , 2017, Journal of Glaciology.

[41]  J. Flexas,et al.  UAVs challenge to assess water stress for sustainable agriculture , 2015 .

[42]  M. Rosen The importance of groundwater in playas: A review of playa classifications and the sedimentology and hydrology of playas , 1994 .

[43]  J. Svendsen Parabolic halite dunes on the Salar de Uyuni, Bolivia , 2003 .

[44]  Philippe De Smedt,et al.  On introducing an image-based 3D reconstruction method in archaeological excavation practice , 2014 .

[45]  A. Pommerol,et al.  Analysis of polygonal cracking patterns in chloride‐bearing terrains on Mars: Indicators of ancient playa settings , 2013 .

[46]  N. Thomas,et al.  Field investigation of dried lakes in western United States as an analogue to desiccation fractures on Mars , 2015 .

[47]  H. Alphan,et al.  Monitoring Environmental Changes in the Mediterranean Coastal Landscape: The Case of Cukurova, Turkey , 2005, Environmental management.

[48]  Geert Verhoeven,et al.  Taking computer vision aloft – archaeological three‐dimensional reconstructions from aerial photographs with photoscan , 2011 .

[49]  S. Piqueux,et al.  The water content of recurring slope lineae on Mars , 2015 .

[50]  Geoffrey O. Seltzer,et al.  Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano , 2001, Nature.

[51]  K. Harrison,et al.  Water budgets of martian recurring slope lineae , 2013 .

[52]  Agustin Lobo,et al.  Mapping Crop Planting Quality in Sugarcane from UAV Imagery: A Pilot Study in Nicaragua , 2016, Remote. Sens..

[53]  E. Vázquez-Suñé,et al.  3D mapping, hydrodynamics and modelling of the freshwater-brine mixing zone in salt flats similar to the Salar de Atacama (Chile) , 2018, Journal of Hydrology.

[54]  Jana Müllerová,et al.  Assessing the Accuracy of Digital Surface Models Derived from Optical Imagery Acquired with Unmanned Aerial Systems , 2019, Drones.

[55]  Tao Liu,et al.  Comparing fully convolutional networks, random forest, support vector machine, and patch-based deep convolutional neural networks for object-based wetland mapping using images from small unmanned aircraft system , 2018 .

[56]  I. Lindstrøm No mitigating effects of roadside vegetation clearing on ungulate-vehicle collisions in Nord-Trøndelag , 2016 .

[57]  V. Chevrier,et al.  Formation of recurring slope lineae by liquid brines on present‐day Mars , 2012 .

[58]  Astrid Lambrecht,et al.  On the potential of very high-resolution repeat DEMs in glacial and periglacial environments , 2010 .

[59]  Ashwagosha Ganju,et al.  Scenario-Based Validation of Moderate Resolution DEMs Freely Available for Complex Himalayan Terrain , 2016, Pure and Applied Geophysics.

[60]  Alfred S. McEwen,et al.  Spectral evidence for hydrated salts in recurring slope lineae on Mars , 2015 .

[61]  Alfred S. McEwen,et al.  Impact airblast triggers dust avalanches on Mars , 2012 .

[62]  I. Colomina,et al.  Unmanned aerial systems for photogrammetry and remote sensing: A review , 2014 .

[63]  Livio Pinto,et al.  Experimental analysis of different software packages for orientation and digital surface modelling from UAV images , 2014, Earth Science Informatics.

[64]  A. McEwen,et al.  Granular flows at recurring slope lineae on Mars indicate a limited role for liquid water , 2017, Nature Geoscience.

[65]  Yongxue Liu,et al.  Classification mapping and species identification of salt marshes based on a short-time interval NDVI time-series from HJ-1 optical imagery , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[66]  Urs Wegmüller,et al.  Ground Deformation Monitoring Over Venice Lagoon Using Combined DInSAR/PSI Techniques , 2014 .

[67]  Jean Ponce,et al.  Accurate Camera Calibration from Multi-View Stereo and Bundle Adjustment , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[68]  Manish R. Patel,et al.  Transport processes induced by metastable boiling water under Martian surface conditions , 2016 .

[69]  Sabine Chabrillat,et al.  Analyses of Recent Sediment Surface Dynamic of a Namibian Kalahari Salt Pan Based on Multitemporal Landsat and Hyperspectral Hyperion Data , 2017, Remote. Sens..

[70]  D. Delparte,et al.  Distributed under Creative Commons Cc-by 4.0 Integrating Structure-from-motion Photogrammetry with Geospatial Software as a Novel Technique for Quantifying 3d Ecological Characteristics of Coral Reefs , 2022 .

[71]  K. Jones An inventory and mapping of cliffs within the South Cumberland Plateau region of Tennessee , 2018 .

[72]  Diofantos G. Hadjimitsis,et al.  The methodology of documenting cultural heritage sites using photogrammetry, UAV, and 3D printing techniques: the case study of Asinou Church in Cyprus , 2015, International Conference on Remote Sensing and Geoinformation of Environment.

[73]  Priyakant Sinha,et al.  Mapping salt-marsh land-cover vegetation using high-spatial and hyperspectral satellite data to assist wetland inventory , 2014 .

[74]  Gregory A. Keoleian,et al.  Global lithium resources: Relative importance of pegmatite, brine and other deposits , 2012 .

[75]  Mark W. Smith,et al.  Structure from motion photogrammetry in physical geography , 2016 .

[76]  Wesley G. Gush The decline of the globally threatened Rudd's Lark in one of its last remaining core sites, the Wakkerstroom grasslands , 2017 .

[77]  L. Turk Diurnal fluctuations of water tables induced by atmospheric pressure changes , 1975 .

[78]  Ryan R. Jensen,et al.  Small-Scale Unmanned Aerial Vehicles in Environmental Remote Sensing: Challenges and Opportunities , 2011 .

[79]  P. Burrough,et al.  Principles of geographical information systems , 1998 .

[80]  Jurandir Zullo,et al.  Characterization of the Salar de Uyuni for in-orbit satellite calibration , 2003, IEEE Trans. Geosci. Remote. Sens..

[81]  Takashi Matsubara,et al.  Advantages of unmanned aerial vehicle (UAV) photogrammetry for landscape analysis compared with satellite data: A case study of postmining sites in Indonesia , 2018 .

[82]  J. L. Mitchell,et al.  Recurring slope lineae and chlorides on the surface of Mars , 2016 .

[83]  Anshuman Bhardwaj,et al.  Distribution and Morphologies of Transverse Aeolian Ridges in ExoMars 2020 Rover Landing Site , 2019, Remote. Sens..

[84]  J. Head,et al.  Topographic measurements of slope streaks on Mars , 2016 .

[85]  G. Ruvkun,et al.  Planetary Protection and Mars Special Regions--A Suggestion for Updating the Definition. , 2016, Astrobiology.

[86]  Kenneth L. Tanaka,et al.  A new analysis of Mars "Special Regions": findings of the second MEPAG Special Regions Science Analysis Group (SR-SAG2). , 2014, Astrobiology.

[87]  P. Surový,et al.  Forest Stand Inventory Based on Combined Aerial and Terrestrial Close-Range Photogrammetry , 2016 .

[88]  F. Risacher,et al.  The origin of brines and salts in Chilean salars: a hydrochemical review , 2003 .

[89]  Steven C. Chapra,et al.  Remote Sensing of Submerged Aquatic Vegetation in a Shallow Non-Turbid River Using an Unmanned Aerial Vehicle , 2014, Remote. Sens..

[90]  H. Edwards,et al.  Life in the sabkha: Raman spectroscopy of halotrophic extremophiles of relevance to planetary exploration , 2006, Analytical and bioanalytical chemistry.

[91]  S. Tyler,et al.  Evaporation and land surface energy budget at the Salar de Atacama, Northern Chile , 2005 .

[92]  Ankur Pandit,et al.  Demarcation of potential avalanche sites using remote sensing and ground observations: a case study of Gangotri glacier , 2014 .

[93]  J. Guinan,et al.  Multiscale Terrain Analysis of Multibeam Bathymetry Data for Habitat Mapping on the Continental Slope , 2007 .

[94]  Xiaohua Tong,et al.  Integration of UAV-Based Photogrammetry and Terrestrial Laser Scanning for the Three-Dimensional Mapping and Monitoring of Open-Pit Mine Areas , 2015, Remote. Sens..

[95]  Robert S. Nuske,et al.  Using Unmanned Aerial Vehicles (UAV) to Quantify Spatial Gap Patterns in Forests , 2014, Remote. Sens..

[96]  Bernd Etzelmüller,et al.  On the Quantification of Surface Changes using Grid‐based Digital Elevation Models (DEMs) , 2000, Trans. GIS.

[97]  Alfred S. McEwen,et al.  HiRISE observations of slope streaks on Mars , 2007 .

[98]  J. Head,et al.  Erratum: Don Juan Pond, Antarctica: Near-surface CaCl 2-brine feeding Earth's most saline lake and implications for Mars (Scientific Reports (2013) 1 (1166) DOI: 10.1038/srep01166) , 2013 .

[99]  M. Gooseff,et al.  Water tracks and permafrost in Taylor Valley, Antarctica: Extensive and shallow groundwater connectivity in a cold desert ecosystem , 2011 .

[100]  K. Oost,et al.  Reproducibility of UAV-based earth topography reconstructions based on Structure-from-Motion algorithms , 2016 .

[101]  J. Head,et al.  Slope streaks on Mars: A new “wet” mechanism , 2009 .

[102]  Andreas Burkart,et al.  Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance , 2015 .

[103]  Karen Northon Mars Helicopter to Fly on NASA’s Next Red Planet Rover Mission , 2018 .

[104]  Joong-Sun Won,et al.  Potential uses of TerraSAR-X for mapping herbaceous halophytes over salt marsh and tidal flats , 2012 .

[105]  Di Wang,et al.  Modeling Glacier Elevation Change from DEM Time Series , 2015, Remote. Sens..

[106]  C. McKay,et al.  Astrobiology through the ages of Mars: the study of terrestrial analogues to understand the habitability of Mars. , 2010, Astrobiology.

[107]  A. Watson,et al.  Rock block monitoring of rapid salt weathering in southern Tunisia , 1984 .

[108]  L. Wallace,et al.  Assessment of Forest Structure Using Two UAV Techniques: A Comparison of Airborne Laser Scanning and Structure from Motion (SfM) Point Clouds , 2016 .

[109]  J. Belnap,et al.  Aeolian and fluvial processes in dryland regions: the need for integrated studies , 2011 .

[110]  K. Kipp,et al.  Hydrology of the Bonneville Salt Flats, northwestern Utah, and simulation of ground-water flow and solute transport in the shallow-brine aquifer , 1998 .

[111]  A. Bhardwaj,et al.  Discovery of recurring slope lineae candidates in Mawrth Vallis, Mars , 2019, Scientific Reports.

[112]  Frédéric Pouget,et al.  Monitoring the Topography of a Dynamic Tidal Inlet Using UAV Imagery , 2016, Remote. Sens..

[113]  S. Ullman The interpretation of structure from motion , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[114]  Michael J de Smith,et al.  Geospatial Analysis: A Comprehensive Guide to Principles, Techniques and Software Tools , 2007 .

[115]  K. S. Kierein-Young,et al.  Late-stage formation of Martian chloride salts through ponding and evaporation , 2015 .