Assessment of approximate computational methods for conical intersections and branching plane vectors in organic molecules.

Quantum-chemical computational methods are benchmarked for their ability to describe conical intersections in a series of organic molecules and models of biological chromophores. Reference results for the geometries, relative energies, and branching planes of conical intersections are obtained using ab initio multireference configuration interaction with single and double excitations (MRCISD). They are compared with the results from more approximate methods, namely, the state-interaction state-averaged restricted ensemble-referenced Kohn-Sham method, spin-flip time-dependent density functional theory, and a semiempirical MRCISD approach using an orthogonalization-corrected model. It is demonstrated that these approximate methods reproduce the ab initio reference data very well, with root-mean-square deviations in the optimized geometries of the order of 0.1 Å or less and with reasonable agreement in the computed relative energies. A detailed analysis of the branching plane vectors shows that all currently applied methods yield similar nuclear displacements for escaping the strong non-adiabatic coupling region near the conical intersections. Our comparisons support the use of the tested quantum-chemical methods for modeling the photochemistry of large organic and biological systems.

[1]  Walter Thiel,et al.  Beyond the MNDO model: Methodical considerations and numerical results , 1993, J. Comput. Chem..

[2]  Yihan Shao,et al.  General formulation of spin-flip time-dependent density functional theory using non-collinear kernels: theory, implementation, and benchmarks. , 2012, The Journal of chemical physics.

[3]  N. Ferré,et al.  Assessment of Density Functional Theory for Describing the Correlation Effects on the Ground and Excited State Potential Energy Surfaces of a Retinal Chromophore Model. , 2013, Journal of chemical theory and computation.

[4]  Edward Teller,et al.  The Crossing of Potential Surfaces. , 1937 .

[5]  D. Yarkony S1-S0 INTERNAL CONVERSION IN KETENE. 1. THE ROLE OF CONICAL INTERSECTIONS , 1999 .

[6]  Walter Thiel,et al.  Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3. , 2008, The Journal of chemical physics.

[7]  Lionel Salem,et al.  The Electronic Properties of Diradicals , 1972 .

[8]  Walter Thiel,et al.  Photoinduced nonadiabatic dynamics of pyrimidine nucleobases: on-the-fly surface-hopping study with semiempirical methods. , 2009, The journal of physical chemistry. B.

[9]  W. Thiel,et al.  Hydrogen bonding regulates the monomeric nonradiative decay of adenine in DNA strands. , 2011, Angewandte Chemie.

[10]  Walter Thiel,et al.  Surface Hopping Excited-State Dynamics Study of the Photoisomerization of a Light-Driven Fluorene Molecular Rotary Motor. , 2011, Journal of chemical theory and computation.

[11]  T. Martínez,et al.  Exploring the Conical Intersection Seam: The Seam Space Nudged Elastic Band Method. , 2013, Journal of chemical theory and computation.

[12]  Todd J. Martínez,et al.  Photodynamics of ethylene: ab initio studies of conical intersections , 2000 .

[13]  Todd J. Martínez,et al.  Conical intersections and double excitations in time-dependent density functional theory , 2006 .

[14]  V. Vaida,et al.  Direct absorption spectra of higher excited states of jet‐cooled monosubstituted benzenes: Phenylacetylene, styrene, benzaldehyde, and acetophenone , 1981 .

[15]  T. Martínez,et al.  Ab Initio Study of Cis−Trans Photoisomerization in Stilbene and Ethylene , 2003 .

[16]  M. Robb Conical Intersections in Organic Photochemistry , 2012 .

[17]  Jiahao Chen,et al.  Nonlinear dimensionality reduction for nonadiabatic dynamics: the influence of conical intersection topography on population transfer rates. , 2012, The Journal of chemical physics.

[18]  W. Kohn,et al.  Kohn-Sham theory for ground-state ensembles. , 2001, Physical review letters.

[19]  J. Paier,et al.  Photochemistry of ethylene: a multireference configuration interaction investigation of the excited-state energy surfaces. , 2004, The Journal of chemical physics.

[20]  H. Englisch,et al.  Exact Density Functionals for Ground-State Energies II. Details and Remarks , 1984, July 1.

[21]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[22]  S. Zilberg,et al.  Isomerization around a C=N double bond and a C=C double bond with a nitrogen atom attached: thermal and photochemical routes , 2003, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[23]  H. C. Longuet-Higgins The intersection of potential energy surfaces in polyatomic molecules , 1975, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[24]  Michael Filatov,et al.  Assessment of Density Functional Methods for Obtaining Geometries at Conical Intersections in Organic Molecules , 2013, Journal of chemical theory and computation.

[25]  Walter Thiel,et al.  Photoinduced nonadiabatic dynamics of 9H-guanine. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[26]  Walter Thiel,et al.  Semiempirical quantum–chemical methods , 2014 .

[27]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[28]  Thierry Deutsch,et al.  Assessment of noncollinear spin-flip Tamm-Dancoff approximation time-dependent density-functional theory for the photochemical ring-opening of oxirane. , 2010, Physical chemistry chemical physics : PCCP.

[29]  Walter Thiel,et al.  Implementation of a general multireference configuration interaction procedure with analytic gradients in a semiempirical context using the graphical unitary group approach , 2003, J. Comput. Chem..

[30]  Roland Lindh,et al.  Shape of Multireference, Equation-of-Motion Coupled-Cluster, and Density Functional Theory Potential Energy Surfaces at a Conical Intersection. , 2014, Journal of chemical theory and computation.

[31]  Russell M. Pitzer,et al.  A progress report on the status of the COLUMBUS MRCI program system , 1988 .

[32]  Anna I. Krylov,et al.  The spin–flip approach within time-dependent density functional theory: Theory and applications to diradicals , 2003 .

[33]  Yu-Jong Wu,et al.  Experimental and theoretical studies on Rydberg states of CH2CO in the region 120–220 nm , 2002 .

[34]  M. Filatov,et al.  Excitation energies from spin-restricted ensemble-referenced Kohn-Sham method: a state-average approach. , 2008, The journal of physical chemistry. A.

[35]  W. Thiel,et al.  Nonequilibrium H/D isotope effects from trajectory-based nonadiabatic dynamics. , 2014, The journal of physical chemistry. A.

[36]  Klaus Ruedenberg,et al.  Potential energy surfaces near intersections , 1991 .

[37]  W. Thiel,et al.  Nonadiabatic decay dynamics of a benzylidene malononitrile. , 2012, The journal of physical chemistry. A.

[38]  W. Thiel,et al.  Implementation of surface hopping molecular dynamics using semiempirical methods , 2008 .

[39]  Gg Balint-Kurti,et al.  Lecture notes in Chemistry , 2000 .

[40]  W. Fuß,et al.  Structure of the Conical Intersections Driving the cis–trans Photoisomerization of Conjugated Molecules¶ , 2002, Photochemistry and photobiology.

[41]  M. Robb,et al.  The curvature of the conical intersection seam: an approximate second-order analysis. , 2004, The Journal of chemical physics.

[42]  Walter Thiel,et al.  Comparison of algorithms for conical intersection optimisation using semiempirical methods , 2007 .

[43]  W. Thiel,et al.  Photoinduced ultrafast Wolff rearrangement: a non-adiabatic dynamics perspective. , 2013, Angewandte Chemie.

[44]  D. Yarkony,et al.  Nonadiabatic Interactions Between Potential Energy Surfaces: Theory and Applications , 2007 .

[45]  Donald G Truhlar,et al.  Configuration Interaction-Corrected Tamm-Dancoff Approximation: A Time-Dependent Density Functional Method with the Correct Dimensionality of Conical Intersections. , 2014, The journal of physical chemistry letters.

[46]  W. Thiel,et al.  Intramolecular hydrogen bonding plays a crucial role in the photophysics and photochemistry of the GFP chromophore. , 2012, Journal of the American Chemical Society.

[47]  Mark S Gordon,et al.  Photoisomerization of stilbene: a spin-flip density functional theory approach. , 2011, The journal of physical chemistry. A.

[48]  Walter Thiel,et al.  Generic implementation of semi-analytical CI gradients for NDDO-type methods , 2005 .

[49]  A. Baronavski,et al.  Ultrafast studies of solvent effects in the isomerization of cis-stilbene , 1992 .

[50]  Anna I Krylov,et al.  Conical Intersection and Potential Energy Surface Features of a Model Retinal Chromophore: Comparison of EOM-CC and Multireference Methods. , 2013, Journal of chemical theory and computation.

[51]  Josef Michl,et al.  Neutral and Charged Biradicals, Zwitterions, Funnels in S1, and Proton Translocation: Their Role in Photochemistry, Photophysics, and Vision , 1987 .

[52]  Á. Rubio,et al.  Assessment of dressed time-dependent density-functional theory for the low-lying valence states of 28 organic chromophores , 2010, 1101.0291.

[53]  Thomas Müller,et al.  Columbus—a program system for advanced multireference theory calculations , 2011 .

[54]  E. Baerends,et al.  Aufbau derived from a unified treatment of occupation numbers in Hartree-Fock, Kohn-Sham, and natural orbital theories with the Karush-Kuhn-Tucker conditions for the inequality constraints n(i)or=0. , 2010, The Journal of chemical physics.

[55]  Tom Ziegler,et al.  Time-dependent density functional theory based on a noncollinear formulation of the exchange-correlation potential. , 2004, The Journal of chemical physics.

[56]  Todd J Martínez,et al.  Optimizing conical intersections without derivative coupling vectors: application to multistate multireference second-order perturbation theory (MS-CASPT2). , 2008, The journal of physical chemistry. B.

[57]  C. Filippi,et al.  Excitation energies of retinal chromophores: critical role of the structural model. , 2012, Physical chemistry chemical physics : PCCP.

[58]  W. Thiel,et al.  Nonadiabatic dynamics of a truncated indigo model. , 2012, Physical chemistry chemical physics : PCCP.

[59]  Stephen Wilson,et al.  Handbook of molecular physics and quantum chemistry , 2003 .

[60]  H. Lischka,et al.  Analytic MRCI gradient for excited states: formalism and application to the n-π* valence- and n-(3s,3p) Rydberg states of formaldehyde , 2002 .

[61]  Vincenzo Balzani,et al.  Light powered molecular machines. , 2009, Chemical Society reviews.

[62]  S. Zilberg,et al.  Locating conical intersections relevant to photochemical reactions , 2008 .

[63]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[64]  Zaida Luthey-Schulten,et al.  Multiple Alignment of protein structures and sequences for VMD , 2006, Bioinform..

[65]  Walter Thiel,et al.  Orthogonalization corrections for semiempirical methods , 2000 .

[66]  W. Thiel,et al.  Periodic decay in the photoisomerisation of p-aminoazobenzene. , 2013, Physical chemistry chemical physics : PCCP.

[67]  W. Thiel,et al.  Photodynamics of Schiff base salicylideneaniline: trajectory surface-hopping simulations. , 2013, The journal of physical chemistry. A.

[68]  Benjamin G. Levine,et al.  Ab initio multiple spawning dynamics of excited butadiene: role of charge transfer. , 2009, The journal of physical chemistry. A.

[69]  Björn O. Roos,et al.  Second-order perturbation theory with a complete active space self-consistent field reference function , 1992 .

[70]  E. J. Baerends,et al.  One - determinantal pure state versus ensemble Kohn-Sham solutions in the case of strong electron correlation: CH2 and C2 , 1998 .

[71]  Hans Lischka,et al.  Analytic evaluation of nonadiabatic coupling terms at the MR-CI level. I. Formalism. , 2004, The Journal of chemical physics.

[72]  Oliveira,et al.  Density-functional theory for ensembles of fractionally occupied states. II. Application to the He atom. , 1988, Physical review. A, General physics.

[73]  김삼묘,et al.  “Bioinformatics” 특집을 내면서 , 2000 .

[74]  W. Thiel,et al.  Nonradiative deexcitation dynamics of 9H-adenine: an OM2 surface hopping study. , 2008, The journal of physical chemistry. A.

[75]  Francesc Illas,et al.  Restricted Ensemble-Referenced Kohn-Sham versus Broken Symmetry Approaches in Density Functional Theory:  Magnetic Coupling in Cu Binuclear Complexes. , 2007, Journal of chemical theory and computation.

[76]  Isaiah Shavitt,et al.  The Method of Configuration Interaction , 1977 .

[77]  Arvi Rauk,et al.  On the calculation of multiplet energies by the hartree-fock-slater method , 1977 .

[78]  W. Thiel,et al.  Chiral Pathways and Periodic Decay in cis-Azobenzene Photodynamics , 2011 .

[79]  D. Yarkony,et al.  Conical Intersections: Electronic Structure, Dynamics and Spectroscopy , 2004 .

[80]  You Lu,et al.  Monomeric adenine decay dynamics influenced by the DNA environment , 2012, J. Comput. Chem..

[81]  R. C. Morrison Electron correlation and noninteracting v-representability in density functional theory: The Be isoelectronic series , 2002 .

[82]  Conical Intersections: Theory, Computation and Experiment (Advances in Physical Chemistry) , 2011 .

[83]  E. J. Baerends,et al.  Benchmark calculations of chemical reactions in density functional theory: comparison of the accurate Kohn-Sham solution with generalized gradient approximations for the H2+H and H2+H2 reactions. , 1999 .

[84]  M. Barbatti Nonadiabatic dynamics with trajectory surface hopping method , 2011 .

[85]  H. C. Longuet-Higgins,et al.  Intersection of potential energy surfaces in polyatomic molecules , 1963 .

[86]  B. Hartke,et al.  Photochemical dynamics of E-iPr-furylfulgide. , 2012, Physical chemistry chemical physics : PCCP.

[87]  Isaiah Shavitt,et al.  The Graphical Unitary Group Approach and Its Application to Direct Configuration Interaction Calculations , 1981 .

[88]  J. Tully Perspective: Nonadiabatic dynamics theory. , 2012, The Journal of chemical physics.

[89]  O. Franck,et al.  Generalised adiabatic connection in ensemble density-functional theory for excited states: example of the H2 molecule , 2013, 1308.4596.

[90]  Donald G Truhlar,et al.  Combined Self-Consistent-Field and Spin-Flip Tamm-Dancoff Density Functional Approach to Potential Energy Surfaces for Photochemistry. , 2013, The journal of physical chemistry letters.

[91]  Walter Thiel,et al.  Critical appraisal of excited state nonadiabatic dynamics simulations of 9H-adenine. , 2012, The Journal of chemical physics.

[92]  D. Yarkony,et al.  Analytic evaluation of nonadiabatic coupling terms at the MR-CI level. II. Minima on the crossing seam: formaldehyde and the photodimerization of ethylene. , 2004, The Journal of chemical physics.

[93]  D. Yarkony,et al.  Conical Intersections: Theory, Computation and Experiment , 2011 .

[94]  D. Yarkony,et al.  On the intersection of two potential energy surfaces of the same symmetry. Systematic characterization using a Lagrange multiplier constrained procedure , 1993 .

[95]  S. Zilberg,et al.  The use of elementary reaction coordinates in the search for conical intersections , 2005 .

[96]  S. Shaik,et al.  Diradicaloids: Description by the Spin-Restricted, Ensemble-Referenced Kohn-Sham Density Functional Method , 2000 .

[97]  D. Yarkony Diabolical conical intersections , 1996 .

[98]  S. Shaik,et al.  Application of spin-restricted open-shell Kohn-Sham method to atomic and molecular multiplet states , 1999 .

[99]  P. Wormer,et al.  Theory and Applications of Computational Chemistry The First Forty Years , 2005 .

[100]  Potential energy surface crossings in organic photochemistry , 1996 .

[101]  Isaiah Shavitt,et al.  New implementation of the graphical unitary group approach for multireference direct configuration interaction calculations , 2009 .

[102]  M. Barbatti,et al.  Dynamics starting at a conical intersection: application to the photochemistry of pyrrole. , 2009, The Journal of chemical physics.

[103]  Satoshi Maeda,et al.  Updated Branching Plane for Finding Conical Intersections without Coupling Derivative Vectors. , 2010, Journal of chemical theory and computation.

[104]  S. Shaik,et al.  Spin-restricted density functional approach to the open-shell problem , 1998 .

[105]  H. Schaefer Methods of Electronic Structure Theory , 1977 .

[106]  Mark S Gordon,et al.  Optimizing conical intersections by spin-flip density functional theory: application to ethylene. , 2009, The journal of physical chemistry. A.

[107]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[108]  S. Shaik,et al.  A spin-restricted ensemble-referenced Kohn Sham method and its application to diradicaloid situations , 1999 .

[109]  Walter Thiel,et al.  Perspectives on Semiempirical Molecular Orbital Theory , 2007 .

[110]  Massimo Olivucci,et al.  Designing conical intersections for light-driven single molecule rotary motors: from precessional to axial motion. , 2014, The Journal of organic chemistry.

[111]  W. Thiel,et al.  QM/MM nonadiabatic decay dynamics of 9H-adenine in aqueous solution. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[112]  Elliott H. Lieb,et al.  Density Functionals for Coulomb Systems , 1983 .

[113]  Thomas Müller,et al.  High-level multireference methods in the quantum-chemistry program system COLUMBUS: Analytic MR-CISD and MR-AQCC gradients and MR-AQCC-LRT for excited states, GUGA spin–orbit CI and parallel CI density , 2001 .

[114]  Claudia Filippi,et al.  Absorption Spectrum of the Green Fluorescent Protein Chromophore: A Difficult Case for ab Initio Methods? , 2009, Journal of chemical theory and computation.

[115]  José A. Gámez,et al.  Cooperating Dinitrogen and Phenyl Rotations in trans-Azobenzene Photoisomerization. , 2012, Journal of chemical theory and computation.

[116]  H. Lischka,et al.  Multiconfiguration self-consistent field and multireference configuration interaction methods and applications. , 2012, Chemical reviews.

[117]  Walter Thiel,et al.  Benchmark of Electronically Excited States for Semiempirical Methods: MNDO, AM1, PM3, OM1, OM2, OM3, INDO/S, and INDO/S2. , 2010, Journal of chemical theory and computation.

[118]  H. Ågren,et al.  Spin-flip time dependent density functional theory applied to excited states with single, double, or mixed electron excitation character. , 2010, The Journal of chemical physics.