On a generalization of planar functions

Planar functions have deep applications in different areas of mathematics. We give a generalization of planar functions, and we obtain construction and classification results concerning these new objects. More in detail, for a prime power \(q=p^r\) and \(\beta \in {\mathbb {F}}_q{\setminus }\{0,1\}\), we call a function \(f : {\mathbb {F}}_q \rightarrow {\mathbb {F}}_q\)\(\beta \)-planar function in \({\mathbb {F}}_{q}\) if for each \(\gamma \in {\mathbb {F}}_{q}\) we have that \(f(x+\gamma )-\beta f(x)\) permutes \({\mathbb {F}}_{q}\). In this work, we study \(\beta \)-planar monomials: We provide some necessary conditions for general r, whereas for \(r\le 3\) we construct examples of \(\beta \)-planar monomials. Connections with algebraic curves are used to prove nonexistence results.

[1]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[2]  The State of the Art on the Conjecture of Exceptional APN Functions , 2017 .

[3]  Edward Spence,et al.  Relative Difference Sets and Quasiregular Collineation Groups , 1975, J. Comb. Theory, Ser. A.

[4]  Daniele Bartoli,et al.  Exceptional scattered polynomials , 2017, Journal of Algebra.

[5]  Qing Xiang,et al.  Pseudo-Paley graphs and skew Hadamard difference sets from presemifields , 2007, Des. Codes Cryptogr..

[6]  Cunsheng Ding,et al.  Systematic authentication codes from highly nonlinear functions , 2004, IEEE Transactions on Information Theory.

[7]  P. Müller A Weil-Bound Free Proof of Schur's Conjecture , 1997 .

[8]  José Felipe Voloch,et al.  Wronskians and linear independence in fields of prime characteristic , 1987 .

[9]  Zhengbang Zha,et al.  New families of perfect nonlinear polynomial functions , 2009 .

[10]  Robert S. Coulter,et al.  Planar Functions and Planes of Lenz-Barlotti Class II , 1997, Des. Codes Cryptogr..

[11]  Alexander Pott,et al.  Almost perfect and planar functions , 2016, Des. Codes Cryptogr..

[12]  Gary McGuire,et al.  Proof of a conjecture of Segre and Bartocci on monomial hyperovals in projective planes , 2010, Des. Codes Cryptogr..

[13]  Yue Zhou,et al.  Planar functions over fields of characteristic two , 2013, ArXiv.

[14]  Xueli Wang,et al.  Perfect nonlinear binomials and their semifields , 2009, Finite Fields Their Appl..

[15]  Elodie Leducq,et al.  Functions which are PN on infinitely many extensions of $$\mathbb {F}_p,\,p$$Fp,p odd , 2010, Des. Codes Cryptogr..

[16]  Cunsheng Ding,et al.  A family of optimal constant-composition codes , 2005, IEEE Transactions on Information Theory.

[17]  Cunsheng Ding Cyclic Codes from APN and Planar Functions , 2012, ArXiv.

[18]  David Jedlicka,et al.  APN monomials over GF(2n) for infinitely many n , 2007, Finite Fields Their Appl..

[19]  Michael E. Zieve Planar functions and perfect nonlinear monomials over finite fields , 2013, Des. Codes Cryptogr..

[20]  Felix Lazebnik,et al.  On the classification of planar monomials over fields of square order , 2012, Finite Fields Their Appl..

[21]  Yue Zhou (2n,2n,2n,1)‐Relative Difference Sets and Their Representations , 2013 .

[22]  Francisco Monserrat,et al.  On the classification of exceptional planar functions over $$\mathbb {F}_{p}$$Fp , 2013, ArXiv.

[23]  Daniel Panario,et al.  Handbook of Finite Fields , 2013, Discrete mathematics and its applications.

[24]  Cunsheng Ding,et al.  Signal Sets From Functions With Optimum Nonlinearity , 2007, IEEE Transactions on Communications.

[25]  Heeralal Janwa,et al.  Double-Error-Correcting Cyclic Codes and Absolutely Irreducible Polynomials over GF(2) , 1995 .

[26]  Cunsheng Ding,et al.  A family of skew Hadamard difference sets , 2006, J. Comb. Theory, Ser. A.

[27]  J. Voloch,et al.  Fermat curves over finite fields , 1988 .

[28]  Tor Helleseth,et al.  Constructions of complete permutation polynomials , 2018, Des. Codes Cryptogr..

[29]  P. Dembowski,et al.  Planes of ordern with collineation groups of ordern2 , 1968 .

[30]  Gary McGuire,et al.  Proof of a Conjecture on the Sequence of Exceptional Numbers, Classifying Cyclic Codes and APN Functions , 2009, ArXiv.

[31]  Alexander Pott,et al.  Some Theorems on Planar Mappings , 2008, WAIFI.

[32]  Claude Carlet,et al.  Vectorial Boolean Functions for Cryptography , 2006 .

[33]  Norman L. Johnson Projective planes of prime order p that admit collineation groups of order p2 , 1987 .

[34]  Lars R. Knudsen,et al.  Provable Security Against Differential Cryptanalysis , 1992, CRYPTO.

[35]  Cunsheng Ding,et al.  The weight distribution of a class of linear codes from perfect nonlinear functions , 2006, IEEE Transactions on Information Theory.

[36]  Robert S. Coulter The classification of planar monomials over fields of prime square order , 2006 .

[37]  Cunsheng Ding,et al.  Linear codes from perfect nonlinear mappings and their secret sharing schemes , 2005, IEEE Transactions on Information Theory.