Chapter 1 Advances in 4G Communication Networks: A 5G Perspective

[1]  Dirk Wübben,et al.  Cloud technologies for flexible 5G radio access networks , 2014, IEEE Communications Magazine.

[2]  Rui Wang,et al.  Potentials and Challenges of C-RAN Supporting Multi-RATs Toward 5G Mobile Networks , 2014, IEEE Access.

[3]  H.T. Friis,et al.  A Note on a Simple Transmission Formula , 1946, Proceedings of the IRE.

[4]  Laurent Dussopt,et al.  Millimeter-wave access and backhauling: the solution to the exponential data traffic increase in 5G mobile communications systems? , 2014, IEEE Communications Magazine.

[5]  SHAHID MUMTAZ,et al.  Direct mobile-to-mobile communication: Paradigm for 5G , 2014, IEEE Wireless Communications.

[6]  Edward W. Knightly,et al.  IEEE 802.11ad: directional 60 GHz communication for multi-Gigabit-per-second Wi-Fi [Invited Paper] , 2014, IEEE Communications Magazine.

[7]  Erik G. Larsson,et al.  Massive MIMO for next generation wireless systems , 2013, IEEE Communications Magazine.

[8]  A. Lee Swindlehurst,et al.  Millimeter-wave massive MIMO: the next wireless revolution? , 2014, IEEE Communications Magazine.

[9]  Yang Li,et al.  Full dimension MIMO (FD-MIMO): The next evolution of MIMO in LTE systems , 2014, IEEE Wireless Communications.

[10]  Chin-Feng Lai,et al.  Integration of SDR and SDN for 5G , 2014, IEEE Access.

[11]  Theodore S. Rappaport,et al.  Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges , 2014, Proceedings of the IEEE.

[12]  David Gesbert,et al.  A Coordinated Approach to Channel Estimation in Large-Scale Multiple-Antenna Systems , 2012, IEEE Journal on Selected Areas in Communications.

[13]  Ekram Hossain,et al.  Evolution toward 5G multi-tier cellular wireless networks: An interference management perspective , 2014, IEEE Wireless Communications.

[14]  Ralf R. Müller,et al.  Blind Pilot Decontamination , 2013, IEEE Journal of Selected Topics in Signal Processing.

[15]  Antonella Molinaro,et al.  Toward 5G densenets: architectural advances for effective machine-type communications over femtocells , 2015, IEEE Communications Magazine.

[16]  Theodore S. Rappaport,et al.  Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! , 2013, IEEE Access.

[17]  Erik G. Larsson,et al.  Scaling Up MIMO: Opportunities and Challenges with Very Large Arrays , 2012, IEEE Signal Process. Mag..

[18]  Chin-Sean Sum,et al.  IEEE 802.15.3c: the first IEEE wireless standard for data rates over 1 Gb/s , 2011, IEEE Communications Magazine.

[19]  James V. Krogmeier,et al.  Millimeter Wave Beamforming for Wireless Backhaul and Access in Small Cell Networks , 2013, IEEE Transactions on Communications.

[20]  Muhammad Ali Imran,et al.  Energy Efficiency Benefits of RAN-as-a-Service Concept for a Cloud-Based 5G Mobile Network Infrastructure , 2014, IEEE Access.

[21]  Stephan Saur,et al.  3D beamforming: Performance improvement for cellular networks , 2013, Bell Labs Technical Journal.

[22]  Thomas L. Marzetta,et al.  Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas , 2010, IEEE Transactions on Wireless Communications.

[23]  Zhouyue Pi,et al.  An introduction to millimeter-wave mobile broadband systems , 2011, IEEE Communications Magazine.

[24]  Zhong Fan,et al.  Emerging technologies and research challenges for 5G wireless networks , 2014, IEEE Wireless Communications.

[25]  Ali H. Sayed,et al.  A Leakage-Based Precoding Scheme for Downlink Multi-User MIMO Channels , 2007, IEEE Transactions on Wireless Communications.

[26]  Ta-Sung Lee,et al.  Sectorization with beam pattern design using 3D beamforming techniques , 2013, 2013 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference.