Exploring the complexity boundary between coloring and list-coloring

Abstract Many classes of graphs where the vertex coloring problem is polynomially solvable are known, the most prominent being the class of perfect graphs. However, the list-coloring problem is NP-complete for many subclasses of perfect graphs. In this work we explore the complexity boundary between vertex coloring and list-coloring on such subclasses of perfect graphs, where the former admits polynomial-time algorithms but the latter is NP-complete. Our goal is to analyze the computational complexity of coloring problems lying “between” (from a computational complexity viewpoint) these two problems: precoloring extension, μ -coloring, and ( γ , μ )-coloring.

[1]  Yehoshua Perl,et al.  Clustering and domination in perfect graphs , 1984, Discret. Appl. Math..

[2]  Zsolt Tuza,et al.  Precoloring Extension III: Classes of Perfect Graphs , 1996, Combinatorics, Probability and Computing.

[3]  M. Golummc Algorithmic graph theory and perfect graphs , 1980 .

[4]  Klaus Jansen,et al.  The Optimum Cost Chromatic Partition Problem , 1997, CIAC.

[5]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[6]  Zsolt Tuza,et al.  Precoloring extension. I. Interval graphs , 1992, Discret. Math..

[7]  P. Hall On Representatives of Subsets , 1935 .

[8]  Charles J. Colbourn,et al.  The complexity of completing partial Latin squares , 1984, Discret. Appl. Math..

[9]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[10]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[11]  Marek Kubale Some results concerning the complexity of restricted colorings of graphs , 1992, Discret. Appl. Math..

[12]  Flavia Bonomo,et al.  Between coloring and list-coloring: mu-coloring , 2005, Electron. Notes Discret. Math..

[13]  Hans-Jürgen Bandelt,et al.  Distance-hereditary graphs , 1986, J. Comb. Theory, Ser. B.

[14]  Gary L. Miller,et al.  The Complexity of Coloring Circular Arcs and Chords , 1980, SIAM J. Algebraic Discret. Methods.

[15]  Dániel Marx,et al.  Precoloring extension on unit interval graphs , 2006, Discret. Appl. Math..

[16]  Klaus Jansen,et al.  Generalized Coloring for Tree-like Graphs , 1992, WG.

[17]  Z. Tuza,et al.  PRECOLORING EXTENSION. II. GRAPHS CLASSES RELATED TO BIPARTITE GRAPHS , 1993 .

[18]  D. König Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre , 1916 .

[19]  Alan A. Bertossi,et al.  Dominating Sets for Split and Bipartite Graphs , 1984, Inf. Process. Lett..

[20]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[21]  Ian Holyer,et al.  The NP-Completeness of Edge-Coloring , 1981, SIAM J. Comput..

[22]  Zsolt Tuza,et al.  Graph colorings with local constraints - a survey , 1997, Discuss. Math. Graph Theory.