Global search for low-lying crystal structures using the artificial force induced reaction method : A case study on carbon

Title Global search for low-lying crystal structures using the artificial force induced reaction method : A case study on carbon Author(s) Takagi, Makito; Taketsugu, Tetsuya; Kino, Hiori; Tateyama, Yoshitaka; Terakura, Kiyoyuki; Maeda, Satoshi Citation Physical Review B, 95(18): 184110 Issue Date 2017-05-30 Doc URL http://hdl.handle.net/2115/67066 Rights ©2017 American Physical Society Type article Additional Information There are other files related to this item in HUSCAP. Check the above URL. File Information PhysRevB95 184110.pdf

[1]  Mikael Olsson Struct , 2019, C# 8 Quick Syntax Reference.

[2]  Y. Achiba,et al.  Polyyne formation by ns and fs laser induced breakdown in hydrocarbon gas flow , 2017 .

[3]  T. Gu,et al.  Prediction of two‐dimensional materials by the global optimization approach , 2017 .

[4]  Y. Liu,et al.  Wide band gap carbon allotropes: Inspired by zeolite-nets , 2016 .

[5]  Roald Hoffmann,et al.  Homo Citans and Carbon Allotropes: For an Ethics of Citation , 2016, Angewandte Chemie.

[6]  Tetsuya Taketsugu,et al.  Artificial Force Induced Reaction (AFIR) Method for Exploring Quantum Chemical Potential Energy Surfaces. , 2016, Chemical record.

[7]  K. Morokuma,et al.  Computational Catalysis Using the Artificial Force Induced Reaction Method. , 2016, Accounts of chemical research.

[8]  M. Tommasini,et al.  Carbon-atom wires: 1-D systems with tunable properties. , 2016, Nanoscale.

[9]  Chen Qi,et al.  Structural, Elastic, and Electronic Properties of a New Phase of Carbon , 2015 .

[10]  Zachary J. Lapin,et al.  Confined linear carbon chains as a route to bulk carbyne. , 2015, Nature materials.

[11]  K. Ohno,et al.  Prism-C2n carbon dimer, trimer, and nano-sheets: A quantum chemical study , 2015 .

[12]  J. Tuček,et al.  Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. , 2015, Chemical reviews.

[13]  A. Singh,et al.  pentahexoctite: A new two-dimensional allotrope of carbon , 2014, Scientific Reports.

[14]  E. A. Belenkov,et al.  New structural modifications of diamond: LA9, LA10, and CA12 , 2014 .

[15]  Bo Xu,et al.  Covalent-bonded graphyne polymers with high hardness , 2014, Journal of Superhard Materials.

[16]  Yan Cheng,et al.  A possible superhard orthorhombic carbon , 2014 .

[17]  Tetsuya Taketsugu,et al.  Exploring transition state structures for intramolecular pathways by the artificial force induced reaction method , 2014, J. Comput. Chem..

[18]  J. Kortus,et al.  Crossed graphene: Stability and electronic structure , 2013 .

[19]  R. Hoffmann,et al.  Squaroglitter: A 3,4-Connected Carbon Net. , 2013, Journal of chemical theory and computation.

[20]  Yanming Ma,et al.  First-principles structural design of superhard materials. , 2013, The Journal of chemical physics.

[21]  Satoshi Maeda,et al.  Systematic exploration of the mechanism of chemical reactions: the global reaction route mapping (GRRM) strategy using the ADDF and AFIR methods. , 2013, Physical chemistry chemical physics : PCCP.

[22]  Carter Ratcliff 36 , 2012, The Hatak Witches.

[23]  Gang Su,et al.  Octagraphene as a versatile carbon atomic sheet for novel nanotubes, unconventional fullerenes, and hydrogen storage , 2012, 1211.1863.

[24]  D. Tománek,et al.  Formation and stability of cellular carbon foam structures: an ab initio study. , 2012, Physical review letters.

[25]  Xin-Quan Wang,et al.  Structural stabilities and electronic properties of planar C4 carbon sheet and nanoribbons. , 2012, Physical chemistry chemical physics : PCCP.

[26]  Stefan Goedecker,et al.  Crystal Structure of Cold Compressed Graphite , 2012 .

[27]  Li-Min Wang,et al.  Novel superhard carbon: C-centered orthorhombic C8. , 2011, Physical review letters.

[28]  Li-Min Wang,et al.  Three dimensional carbon-nanotube polymers. , 2011, ACS nano.

[29]  E. A. Belenkov,et al.  Structures of diamond-like phases , 2011 .

[30]  Chris J Pickard,et al.  Ab initio random structure searching , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[31]  Jürgen Hafner,et al.  Improved description of the structure of molecular and layered crystals: ab initio DFT calculations with van der Waals corrections. , 2010, The journal of physical chemistry. A.

[32]  Stefano Curtarolo,et al.  High-throughput electronic band structure calculations: Challenges and tools , 2010, 1004.2974.

[33]  Takashi Miyake,et al.  Body-centered tetragonal C4: a viable sp3 carbon allotrope. , 2010, Physical review letters.

[34]  Xiao Dong,et al.  Ab initio study of the formation of transparent carbon under pressure , 2010, 1003.1569.

[35]  Hui Wang,et al.  Superhard monoclinic polymorph of carbon. , 2009, Physical review letters.

[36]  Y. Kawazoe,et al.  New metallic carbon crystal. , 2009, Physical review letters.

[37]  Isao Tanaka,et al.  First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures , 2008 .

[38]  G. Rignanese,et al.  Hypothetical three-dimensional all-sp2 carbon phase , 2008 .

[39]  E. Castro,et al.  The squarographites: A lesson in the chemical topology of tessellations in 2- and 3-dimensions , 2008 .

[40]  K. Sanderson Model predicts structure of crystals , 2007, Nature.

[41]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[42]  A. Oganov,et al.  Crystal structure prediction using ab initio evolutionary techniques: principles and applications. , 2006, The Journal of chemical physics.

[43]  S. Louie,et al.  Structural and electronic properties of carbon in hybrid diamond-graphite structures , 2005 .

[44]  F. Cataldo Polyynes : Synthesis, Properties, and Applications , 2005 .

[45]  H. S. Domingos Carbon allotropes and strong nanotube bundles , 2004 .

[46]  C. Pickard,et al.  Systematic prediction of crystal structures: An application to sp 3 -hybridized carbon polymorphs , 2004 .

[47]  J. Badding,et al.  FLAPW investigation of the stability and equation of state of rectangulated carbon , 2002 .

[48]  R. Kaiser,et al.  Experimental investigation on the formation of carbon-bearing molecules in the interstellar medium via neutral-neutral reactions. , 2002, Chemical reviews.

[49]  C. Pickard,et al.  Systematic prediction of crystal structures , 2001 .

[50]  Patrick W. Fowler,et al.  Pentaheptite Modifications of the Graphite Sheet , 2000, J. Chem. Inf. Comput. Sci..

[51]  J. Fayós Possible 3D Carbon Structures as Progressive Intermediates in Graphite to Diamond Phase Transition , 1999 .

[52]  H. Scheraga,et al.  Global optimization of clusters, crystals, and biomolecules. , 1999, Science.

[53]  R. Baughman,et al.  A carbon phase that graphitizes at room temperature , 1997 .

[54]  Benedict,et al.  Prediction of a pure-carbon planar covalent metal. , 1996, Physical review. B, Condensed matter.

[55]  Douglas J. Klein,et al.  CONJUGATED-CIRCUIT COMPUTATIONS ON TWO-DIMENSIONAL CARBON NETWORKS , 1994 .

[56]  Ray H. Baughman,et al.  Crystalline networks with unusual predicted mechanical and thermal properties , 1993, Nature.

[57]  R. Baughman,et al.  Tubulanes: carbon phases based on cross-linked fullerene tubules , 1993 .

[58]  K. E. Spear,et al.  Diamond polytypes and their vibrational spectra , 1990 .

[59]  Ajit Banerjee,et al.  Search for stationary points on surfaces , 1985 .

[60]  Roald Hoffmann,et al.  Hypothetical metallic allotrope of carbon , 1983 .

[61]  A. F. Wells The geometrical basis of crystal chemistry. Part 1 , 1954 .

[62]  Artem R. Oganov,et al.  Modern methods of crystal structure prediction , 2011 .

[63]  D. Sánchez-Portal,et al.  Computing the Properties of Materials from First Principles with SIESTA , 2004 .

[64]  E. Stechel,et al.  Small rings and amorphous tetrahedral carbon , 1999 .

[65]  Daniel Sánchez-Portal,et al.  Density‐functional method for very large systems with LCAO basis sets , 1997 .