Turing patterns with O(3) symmetry

Abstract We perform an explicit center manifold reduction for the general steady-state bifurcation of a chemical reaction–diffusion system in an arbitrary compact domain. In particular we focus on those systems with two chemical species in domains with O(3) symmetry. We illustrate with the Brusselator on the spherical shell and produce explicit computations of the solution branches and their stabilities for the low l bifurcations. Because of the phenomenon of parameter collapse we can create universal bifurcation diagrams for even l. This work is an extension of that done in [Physica D 132 (1999) 339–362].

[1]  Swinney,et al.  Pattern formation in the presence of symmetries. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  M. Golubitsky,et al.  Pattern selection with O(3) symmetry , 1984 .

[3]  P. Chossat,et al.  Steady-State bifurcation with 0(3)-Symmetry , 1991 .

[4]  Edgar Knobloch,et al.  Pattern formation in the three-dimensional reaction-diffusion systems , 1999 .

[5]  I. Epstein,et al.  Modeling of Turing Structures in the Chlorite—Iodide—Malonic Acid—Starch Reaction System , 1991, Science.

[6]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[7]  Resonance in periodically inhibited reaction-diffusion systems , 2002 .

[8]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[9]  I. Prigogine,et al.  Symmetry Breaking Instabilities in Dissipative Systems. II , 1968 .

[10]  R A Barrio,et al.  Turing patterns on a sphere. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  T. K. Callahan,et al.  Long-wavelength instabilities of three-dimensional patterns. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Stephen L. Judd,et al.  Simple and superlattice Turing patterns in reaction-diffusion systems: bifurcation, bistability, and parameter collapse , 1998, patt-sol/9807002.

[13]  R. Hoyle Long wavelength instabilities of square patterns , 1993 .

[14]  F. J. Belinfante On the longitudinal and the transversal delta-function, with some applications , 1946 .

[15]  John Whitehead,et al.  Finite bandwidth, finite amplitude convection , 1969, Journal of Fluid Mechanics.

[16]  Harry L. Swinney,et al.  Transitions in two‐dimensional patterns in a ferrocyanide–iodate–sulfite reaction , 1996 .

[17]  L. G. Harrison,et al.  Reaction-diffusion models of growing plant tips: Bifurcations on hemispheres , 2003, Bulletin of mathematical biology.

[18]  Ian Stewart,et al.  SPIRALS IN SCALAR REACTION–DIFFUSION EQUATIONS , 1995 .

[19]  Dulos,et al.  Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. , 1990, Physical review letters.

[20]  T. K. Callahan,et al.  Symmetry-breaking bifurcations on cubic lattices , 1997 .

[21]  David H. Sattinger,et al.  Group theoretic methods in bifurcation theory , 1979 .

[22]  R. D. Vigil,et al.  Turing patterns in a simple gel reactor , 1992 .

[23]  J. Schnakenberg,et al.  Simple chemical reaction systems with limit cycle behaviour. , 1979, Journal of theoretical biology.