Swimming activity in marine fish.
暂无分享,去创建一个
Marine fish are capable of swimming long distances in annual migrations; they are also capable of high-speed dashes of short duration, and they can occupy small home territories for long periods with little activity. There is a large effect of fish size on the distance fish migrate at slow swimming speeds. When chased by a fishing trawl the effect of fish size on swimming performance can decide their fate. The identity and thickness of muscle used at each speed and evidence for the timing of myotomes used during the body movement cycle can be detected using electromyogram (EMG) electrodes. The cross-sectional area of muscle needed to maintain different swimming speeds can be predicted by relating the swimming drag force to the muscle force. At maximum swimming speed one completed cycle of swimming force is derived in sequence from the whole cross-sectional area of the muscles along the two sides of the fish. This and other aspects of the swimming cycle suggest that each myotome might be responsible for generating forces involved in particular stages of the tail sweep. The thick myotomes at the head end shorten during the peak thrust of the tail blade whereas the thinner myotomes nearer the tail generate stiffness appropriate for transmission of these forces and reposition the tail for the next cycle.