Feasibility of photovoltaic – Thermoelectric hybrid modules
暂无分享,去创建一个
[1] W.G.J.H.M. van Sark,et al. Accuracy of progress ratios determined from experience curves: the case of crystalline silicon photovoltaic module technology development , 2008 .
[2] Wim Turkenburg,et al. Crystalline silicon cell performance at low light intensities , 2009 .
[3] Kevin C. See,et al. Water-processable polymer-nanocrystal hybrids for thermoelectrics. , 2010, Nano letters.
[4] L. P. Bulat,et al. Thermal-photovoltaic solar hybrid system for efficient solar energy conversion , 2006 .
[5] G. Vineyard,et al. Semiconductor Thermoelements and Thermoelectric Cooling , 1957 .
[6] Osamu Yamashita,et al. Bismuth telluride compounds with high thermoelectric figures of merit , 2003 .
[7] Wenming Yang,et al. Development of micro power generators – A review , 2011 .
[8] Dirk Uwe Sauer,et al. Untersuchungen zum Einsatz und Entwicklung von Simulationsmodellen für die Auslegung von Photovoltaik-Systemen , 1994 .
[9] Felix A. Farret,et al. Integration of alternative sources of energy , 2006 .
[10] P. Gilman,et al. MICROPOWER SYSTEM MODELING WITH HOMER , 2005 .
[11] Detlev Heinemann,et al. Monitoring and remote failure detection of grid-connected PV systems based on satellite observations , 2007 .
[12] William A. Goddard,et al. Silicon nanowires as efficient thermoelectric materials , 2008, Nature.
[13] Peter Daszak. Bats, in Black and White , 2010, Science.
[14] M. Dresselhaus,et al. New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .
[15] Annette von Jouanne,et al. Integration of thermoelectrics and photovoltaics as auxiliary power sources in mobile computing applications , 2008 .
[16] Tin-Tai Chow,et al. A Review on Photovoltaic/Thermal Hybrid Solar Technology , 2010, Renewable Energy.
[17] C. Dey,et al. Cooling of photovoltaic cells under concentrated illumination: a critical review , 2005 .
[18] Felix A. Farret,et al. Micropower System Modeling with Homer , 2006 .
[19] Saffa Riffat,et al. Thermoelectrics: a review of present and potential applications , 2003 .
[20] Wei Li,et al. Enhanced thermoelectric performance in p-type BiSbTe bulk alloy with nanoinclusion of ZnAlO , 2011 .
[21] D. Infield,et al. Design optimization of thermoelectric devices for solar power generation , 1998 .
[22] A. Majumdar,et al. Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.
[23] Gunter Rockendorf,et al. PV-hybrid and thermoelectric collectors , 1999 .
[24] Lidong Chen,et al. Thermoelectrics: Direct Solar Thermal Energy Conversion , 2008 .
[25] M. Kovalenko,et al. Semiconductor nanocrystals functionalized with antimony telluride zintl ions for nanostructured thermoelectrics. , 2010, Journal of the American Chemical Society.
[26] D. Rowe. CRC Handbook of Thermoelectrics , 1995 .
[27] David R. Mills,et al. Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review , 2004 .
[28] Rama Venkatasubramanian,et al. Aspects of Thin-Film Superlattice Thermoelectric Materials, Devices, and Applications , 2006 .
[29] M. Dresselhaus,et al. High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.
[30] Cronin B. Vining,et al. Materials science: Desperately seeking silicon , 2008, Nature.
[31] C. B. Vining. An inconvenient truth about thermoelectrics. , 2009, Nature materials.
[32] Ha Herbert Zondag,et al. Flat-plate PV-Thermal collectors and systems : a review , 2008 .
[33] M. Kanatzidis. Nanostructured Thermoelectrics: The New Paradigm?† , 2010 .
[34] Hongxia Xi,et al. Development and applications of solar-based thermoelectric technologies , 2007 .
[35] Meng-Chao Yao. Desperately seeking silicon , 2008 .