Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima

In this paper we seek to summarize the current knowledge about numerical instabilities such as checkerboards, mesh-dependence and local minima occurring in applications of the topology optimization method. The checkerboard problem refers to the formation of regions of alternating solid and void elements ordered in a checkerboard-like fashion. The mesh-dependence problem refers to obtaining qualitatively different solutions for different mesh-sizes or discretizations. Local minima refers to the problem of obtaining different solutions to the same discretized problem when choosing different algorithmic parameters. We review the current knowledge on why and when these problems appear, and we list the methods with which they can be avoided and discuss their advantages and disadvantages.

[1]  Claes Johnson,et al.  Analysis of some mixed finite element methods related to reduced integration , 1982 .

[2]  Frithiof I. Niordson,et al.  Optimal design of elastic plates with a constraint on the slope of the thickness function , 1983 .

[3]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[4]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[5]  M. Zhou,et al.  The COC algorithm, Part II: Topological, geometrical and generalized shape optimization , 1991 .

[6]  R. Kohn,et al.  Topology optimization and optimal shape design using homogenization , 1993 .

[7]  Noboru Kikuchi,et al.  Topology and Generalized Layout Optimization of Elastic Structures , 1993 .

[8]  G. Buttazzo,et al.  An optimal design problem with perimeter penalization , 1993 .

[9]  Gilles A. Francfort,et al.  A Numerical Algorithm for Topology and Shape Optimization , 1993 .

[10]  J. Devaux,et al.  Bifurcation Effects in Ductile Metals With Nonlocal Damage , 1994 .

[11]  Martin P. Bendsøe,et al.  An Analytical Model to Predict Optimal Material Properties in the Context of Optimal Structural Design , 1994 .

[12]  H Weinans,et al.  A physiological approach to the simulation of bone remodeling as a self-organizational control process. , 1994, Journal of biomechanics.

[13]  Antonin Chambolle,et al.  Image Segmentation by Variational Methods: Mumford and Shah Functional and the Discrete Approximations , 1995, SIAM J. Appl. Math..

[14]  Martin P. Bendsøe,et al.  Optimization of Structural Topology, Shape, And Material , 1995 .

[15]  O. Sigmund,et al.  Checkerboard patterns in layout optimization , 1995 .

[16]  C. S. Jog,et al.  A new approach to variable-topology shape design using a constraint on perimeter , 1996 .

[17]  C. S. Jog,et al.  Stability of finite element models for distributed-parameter optimization and topology design , 1996 .

[18]  J. E. Taylor,et al.  On the prediction of material properties and topology for optimal continuum structures , 1997 .

[19]  Ole Sigmund,et al.  Design of materials with extreme thermal expansion using a three-phase topology optimization method , 1997, Smart Structures.

[20]  Ole Sigmund,et al.  On the Design of Compliant Mechanisms Using Topology Optimization , 1997 .

[21]  Pierre Duysinx,et al.  Layout Optimization : A Mathematical Programming Approach , 1997 .

[22]  J. Petersson,et al.  Slope constrained topology optimization , 1998 .

[23]  Ole Sigmund,et al.  On the design of 1–3 piezocomposites using topology optimization , 1998 .

[24]  J. Petersson Some convergence results in perimeter-controlled topology optimization , 1999 .

[25]  J. Petersson,et al.  A Finite Element Analysis of Optimal Variable Thickness Sheets , 1999 .