Numerical Analysis of Two-Phase Flow in Gas-Stirred Reactors

Using the multi-dimensional, turbulent, two-phase flow model, the fluid flow phenomena for gas injecting through a submerged lance in gas-stirred reactors are investigated numerically by a finite difference algorithm. The present numerical model is validated by comparison with the experimental data of the water model and extended to predict the flow fields and mixing phenomena inside the liquid metal model. This study indicates that the flow characteristics and mixing behaviour of the water model are similar to the metal model and the experimental data of the water model can be an important reference for the design of liquid metal reactors. The investigations consist of central (two-dimensional) and off-centred gas injection (three-dimensional) with full—and fractional—depth of lance submergence and with different gas injection rates.