Virological characteristics of the SARS-CoV-2 Omicron BA.2.75 variant

[1]  D. Montefiori,et al.  Neutralization of SARS-CoV-2 Omicron BA.2.75 after mRNA-1273 Vaccination , 2022, The New England journal of medicine.

[2]  H. Date,et al.  SARS-CoV-2 disrupts respiratory vascular barriers by suppressing Claudin-5 expression , 2022, Science advances.

[3]  Fei Shao,et al.  Characterizations of enhanced infectivity and antibody evasion of Omicron BA.2.75 , 2022, bioRxiv.

[4]  J. Zahradník,et al.  Virological characteristics of the SARS-CoV-2 Omicron BA.2.75 , 2022, bioRxiv.

[5]  Y. Ohba,et al.  Comparative pathogenicity of SARS-CoV-2 Omicron subvariants including BA.1, BA.2, and BA.5 , 2022, bioRxiv.

[6]  J. P. Almeida,et al.  SARS-CoV-2 BA.5 vaccine breakthrough risk and severity compared with BA.2: a case-case and cohort study using Electronic Health Records in Portugal , 2022, medRxiv.

[7]  Qian Wang,et al.  Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5 , 2022, Nature.

[8]  P. Schommers,et al.  SARS-CoV-2 Omicron sublineages exhibit distinct antibody escape patterns , 2022, Cell Host & Microbe.

[9]  D. Barouch,et al.  Neutralization Escape by SARS-CoV-2 Omicron Subvariants BA.2.12.1, BA.4, and BA.5 , 2022, The New England journal of medicine.

[10]  G. Lozanski,et al.  Neutralization of the SARS-CoV-2 Omicron BA.4/5 and BA.2.12.1 Subvariants , 2022, The New England journal of medicine.

[11]  Fei Shao,et al.  BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection , 2022, Nature.

[12]  Jumpei Ito,et al.  Neutralisation sensitivity of SARS-CoV-2 omicron subvariants to therapeutic monoclonal antibodies , 2022, The Lancet Infectious Diseases.

[13]  P. Klenerman,et al.  Antibody escape of SARS-CoV-2 Omicron BA.4 and BA.5 from vaccine and BA.1 serum , 2022, Cell.

[14]  Diane J Post,et al.  Rapid decline in vaccine-boosted neutralizing antibodies against SARS-CoV-2 Omicron variant , 2022, Cell Reports Medicine.

[15]  H. Jäck,et al.  Augmented neutralisation resistance of emerging omicron subvariants BA.2.12.1, BA.4, and BA.5 , 2022, The Lancet Infectious Diseases.

[16]  Takeshi Noda,et al.  Cell response analysis in SARS-CoV-2 infected bronchial organoids , 2022, Communications Biology.

[17]  K. Ishii,et al.  Virological characteristics of the SARS-CoV-2 Omicron BA.2 spike , 2022, Cell.

[18]  A. Sigal,et al.  Omicron sub-lineages BA.4/BA.5 escape BA.1 infection elicited neutralizing immunity , 2022, medRxiv.

[19]  J. Zahradník,et al.  The SARS-CoV-2 spike S375F mutation characterizes the Omicron BA.1 variant , 2022, bioRxiv.

[20]  P. Maes,et al.  Serum neutralization of SARS-CoV-2 Omicron sublineages BA.1 and BA.2 in patients receiving monoclonal antibodies , 2022, Nature Medicine.

[21]  Shinji Watanabe,et al.  Efficacy of Antiviral Agents against the SARS-CoV-2 Omicron Subvariant BA.2 , 2022, The New England journal of medicine.

[22]  A. Takaori-Kondo,et al.  Characterization of the immune resistance of SARS-CoV-2 Mu variant and the robust immunity induced by Mu infection , 2022, The Journal of infectious diseases.

[23]  A. Kaneda,et al.  Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant , 2022, Nature.

[24]  A. Mittal,et al.  Structural and antigenic variations in the spike protein of emerging SARS-CoV-2 variants , 2022, PLoS pathogens.

[25]  Shinji Watanabe,et al.  Efficacy of Antibodies and Antiviral Drugs against Covid-19 Omicron Variant , 2022, The New England journal of medicine.

[26]  S. Madhi,et al.  SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses , 2022, Cell.

[27]  D. Fremont,et al.  An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies , 2021, Research square.

[28]  T. Ndung’u,et al.  Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization , 2021, Nature.

[29]  P. Maes,et al.  Considerable escape of SARS-CoV-2 Omicron to antibody neutralization , 2021, Nature.

[30]  Fei Shao,et al.  Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies , 2021, Nature.

[31]  Liyuan Liu,et al.  Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2 , 2021, Nature.

[32]  S. Maurer-Stroh,et al.  GISAID’s Role in Pandemic Response , 2021, China CDC weekly.

[33]  J. Zahradník,et al.  The SARS-CoV-2 Lambda variant exhibits enhanced infectivity and immune resistance , 2021, Cell Reports.

[34]  Y. Kawaoka,et al.  Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation , 2021, Nature.

[35]  Debabrata Dey,et al.  A Protein-Engineered, Enhanced Yeast Display Platform for Rapid Evolution of Challenging Targets , 2021, ACS synthetic biology.

[36]  A. Kaneda,et al.  Neutralization of the SARS-CoV-2 Mu Variant by Convalescent and Vaccine Serum , 2021, The New England journal of medicine.

[37]  M. Farzan,et al.  Mechanisms of SARS-CoV-2 entry into cells , 2021, Nature reviews. Molecular cell biology.

[38]  M. Diamond,et al.  Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktail , 2021, Nature Microbiology.

[39]  D. Standley,et al.  The SARS-CoV-2 Delta variant is poised to acquire complete resistance to wild-type spike vaccines , 2021, bioRxiv.

[40]  O. Dym,et al.  SARS-CoV-2 variant prediction and antiviral drug design are enabled by RBD in vitro evolution , 2021, Nature Microbiology.

[41]  S. Ovchinnikov,et al.  ColabFold: making protein folding accessible to all , 2022, Nature Methods.

[42]  K. Maeda,et al.  Usability of Polydimethylsiloxane-Based Microfluidic Devices in Pharmaceutical Research Using Human Hepatocytes. , 2021, ACS biomaterials science & engineering.

[43]  Ravindra K. Gupta,et al.  SARS-CoV-2 B.1.617 Mutations L452R and E484Q Are Not Synergistic for Antibody Evasion , 2021, The Journal of infectious diseases.

[44]  J. Zahradník,et al.  SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity , 2021, Cell Host & Microbe.

[45]  William T. Harvey,et al.  SARS-CoV-2 variants, spike mutations and immune escape , 2021, Nature Reviews Microbiology.

[46]  S. Lok An NTD supersite of attack , 2021, Cell Host & Microbe.

[47]  J. Dye,et al.  LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants , 2021, bioRxiv.

[48]  Ilya J. Finkelstein,et al.  Prevalent, protective, and convergent IgG recognition of SARS-CoV-2 non-RBD spike epitopes , 2021, Science.

[49]  A. Iafrate,et al.  Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity , 2021, Cell.

[50]  S. Kishigami,et al.  SARS-CoV-2 D614G spike mutation increases entry efficiency with enhanced ACE2-binding affinity , 2021, Nature Communications.

[51]  Larissa B. Thackray,et al.  Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein , 2021, Cell.

[52]  M. Beltramello,et al.  N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2 , 2021, bioRxiv.

[53]  Jihun Lee,et al.  A therapeutic neutralizing antibody targeting receptor binding domain of SARS-CoV-2 spike protein , 2021, Nature communications.

[54]  D. Ho,et al.  Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite , 2021, bioRxiv.

[55]  M. Nussenzweig,et al.  SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies , 2020, Nature.

[56]  A. Griffiths,et al.  A trimeric human angiotensin-converting enzyme 2 as an anti-SARS-CoV-2 agent , 2020, Nature Structural & Molecular Biology.

[57]  J. Dye,et al.  Engineering human ACE2 to optimize binding to the spike protein of SARS coronavirus 2 , 2020, Science.

[58]  J. Sodroski,et al.  Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike , 2020, Nature.

[59]  J. Sodroski,et al.  Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike , 2020, Nature.

[60]  Qiang Zhou,et al.  A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2 , 2020, Science.

[61]  M. Kiso,et al.  The Anticoagulant Nafamostat Potently Inhibits SARS-CoV-2 S Protein-Mediated Fusion in a Cell Fusion Assay System and Viral Infection In Vitro in a Cell-Type-Dependent Manner , 2020, Viruses.

[62]  Ilya J. Finkelstein,et al.  Structure-based Design of Prefusion-stabilized SARS-CoV-2 Spikes , 2020, bioRxiv.

[63]  Amalio Telenti,et al.  Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody , 2020, Nature.

[64]  S. Kishigami,et al.  Super-rapid quantitation of the production of HIV-1 harboring a luminescent peptide tag , 2020, The Journal of Biological Chemistry.

[65]  Linqi Zhang,et al.  Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor , 2020, Nature.

[66]  Fumihiro Kato,et al.  Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells , 2020, Proceedings of the National Academy of Sciences.

[67]  Jia Gu,et al.  fastp: an ultra-fast all-in-one FASTQ preprocessor , 2018, bioRxiv.

[68]  Conrad C. Huang,et al.  UCSF ChimeraX: Meeting modern challenges in visualization and analysis , 2018, Protein science : a publication of the Protein Society.

[69]  Yutaka Suzuki,et al.  Long-term expansion of alveolar stem cells derived from human iPS cells in organoids , 2017, Nature Methods.

[70]  Heng Li,et al.  Minimap2: pairwise alignment for nucleotide sequences , 2017, Bioinform..

[71]  Jiahui Chen,et al.  Improvements to the APBS biomolecular solvation software suite , 2017, Protein science : a publication of the Protein Society.

[72]  David J. Fleet,et al.  cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination , 2017, Nature Methods.

[73]  S. Muro,et al.  Directed Induction of Functional Multi-ciliated Cells in Proximal Airway Epithelial Spheroids from Human Pluripotent Stem Cells , 2015, Stem cell reports.

[74]  S. Ogawa,et al.  Generation of Alveolar Epithelial Spheroids via Isolated Progenitor Cells from Human Pluripotent Stem Cells , 2014, Stem cell reports.

[75]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[76]  A. Steven,et al.  One number does not fit all: mapping local variations in resolution in cryo-EM reconstructions. , 2013, Journal of structural biology.

[77]  Pablo Cingolani,et al.  © 2012 Landes Bioscience. Do not distribute. , 2022 .

[78]  N. Kondo,et al.  Monitoring Viral‐Mediated Membrane Fusion Using Fluorescent Reporter Methods , 2011, Current protocols in cell biology.

[79]  Y. Yanagi,et al.  Structure of the measles virus hemagglutinin bound to its cellular receptor SLAM , 2011, Nature Structural &Molecular Biology.

[80]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[81]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[82]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[83]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[84]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[85]  H. Niwa,et al.  Efficient selection for high-expression transfectants with a novel eukaryotic vector. , 1991, Gene.

[86]  Eleanor,et al.  Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts tropism and fusogenicity , 2022 .

[87]  Nasser,et al.  Virological characteristics of the novel SARS-CoV-2 Omicron variants 1 including BA . 2 , 2022 .

[88]  Christopher J. Williams,et al.  MolProbity: More and better reference data for improved all‐atom structure validation , 2018, Protein science : a publication of the Protein Society.

[89]  Claude-Alain H. Roten,et al.  Fast and accurate short read alignment with Burrows–Wheeler transform , 2009, Bioinform..