Logical abstractions for noisy variational Quantum algorithm simulation

Due to the unreliability and limited capacity of existing quantum computer prototypes, quantum circuit simulation continues to be a vital tool for validating next generation quantum computers and for studying variational quantum algorithms, which are among the leading candidates for useful quantum computation. Existing quantum circuit simulators do not address the common traits of variational algorithms, namely: 1) their ability to work with noisy qubits and operations, 2) their repeated execution of the same circuits but with different parameters, and 3) the fact that they sample from circuit final wavefunctions to drive a classical optimization routine. We present a quantum circuit simulation toolchain based on logical abstractions targeted for simulating variational algorithms. Our proposed toolchain encodes quantum amplitudes and noise probabilities in a probabilistic graphical model, and it compiles the circuits to logical formulas that support efficient repeated simulation of and sampling from quantum circuits for different parameters. Compared to state-of-the-art state vector and density matrix quantum circuit simulators, our simulation approach offers greater performance when sampling from noisy circuits with at least eight to 20 qubits and with around 12 operations on each qubit, making the approach ideal for simulating near-term variational quantum algorithms. And for simulating noise-free shallow quantum circuits with 32 qubits, our simulation approach offers a 66× reduction in sampling cost versus quantum circuit simulation techniques based on tensor network contraction.

[1]  Adnan Darwiche,et al.  Compiling Bayesian Networks with Local Structure , 2005, IJCAI.

[2]  Igor L. Markov,et al.  Quantum Supremacy Is Both Closer and Farther than It Appears , 2018, ArXiv.

[3]  A. Hibbs QED: The Strange Theory of Light and Matter , 1986 .

[4]  Chen-Hsiang Yeang,et al.  A Probabilistic Graphical Model of Quantum Systems , 2010, 2010 Ninth International Conference on Machine Learning and Applications.

[5]  Pierre Marquis,et al.  A Knowledge Compilation Map , 2002, J. Artif. Intell. Res..

[6]  H. Neven,et al.  Simulation of low-depth quantum circuits as complex undirected graphical models , 2017, 1712.05384.

[7]  Alán Aspuru-Guzik,et al.  Variational Quantum Factoring , 2018, QTOP@NetSys.

[8]  Guy Van den Broeck,et al.  Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Models∗ , 2020 .

[9]  Adnan Darwiche,et al.  Modeling and Reasoning with Bayesian Networks , 2009 .

[10]  Robert R. Tucci Quantum Bayesian Nets , 1995, quant-ph/9706039.

[11]  Aram W. Harrow,et al.  Quantum computational supremacy , 2017, Nature.

[12]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[13]  F. Barahona On the computational complexity of Ising spin glass models , 1982 .

[14]  N. Mermin Quantum Computer Science: An Introduction , 2007 .

[15]  D. Bacon,et al.  Quantum approximate optimization of non-planar graph problems on a planar superconducting processor , 2020, Nature Physics.

[16]  Luc De Raedt,et al.  Algebraic model counting , 2012, J. Appl. Log..

[17]  Benchmarking Quantum Computers and the Impact of Quantum Noise , 2019, ACM Comput. Surv..

[18]  Matthew F Pusey,et al.  Theory-independent limits on correlations from generalized Bayesian networks , 2014, 1405.2572.

[19]  Guy Van den Broeck,et al.  Generating and Sampling Orbits for Lifted Probabilistic Inference , 2019, UAI.

[20]  Umesh V. Vazirani,et al.  Quantum complexity theory , 1993, STOC.

[21]  DarwicheAdnan A differential approach to inference in Bayesian networks , 2003 .

[22]  Guy Van den Broeck,et al.  Scaling exact inference for discrete probabilistic programs , 2020, Proc. ACM Program. Lang..

[23]  Alán Aspuru-Guzik,et al.  qTorch: The quantum tensor contraction handler , 2017, PloS one.

[24]  J. Biamonte,et al.  Tensor Networks in a Nutshell , 2017, 1708.00006.

[25]  Telecommunications Board,et al.  Quantum computing , 2019, Mathematics and Computation.

[26]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[27]  J. Joo,et al.  Variational quantum algorithms for nonlinear problems , 2019, Physical Review A.

[28]  B. Terhal Quantum supremacy, here we come , 2018 .

[29]  Adnan Darwiche,et al.  Encoding CNFs to Empower Component Analysis , 2006, SAT.

[30]  Maarten Van den Nest,et al.  Classical simulation of quantum computation, the gottesman-Knill theorem, and slightly beyond , 2008, Quantum Inf. Comput..

[31]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[32]  Mario Szegedy,et al.  What do QAOA energies reveal about graphs , 2019, 1912.12277.

[33]  Andrew W. Cross,et al.  Validating quantum computers using randomized model circuits , 2018, Physical Review A.

[34]  Stéphane Beauregard Circuit for Shor's algorithm using 2n+3 qubits , 2003, Quantum Inf. Comput..

[35]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[36]  Sean Hallgren,et al.  Quantum algorithms for some hidden shift problems , 2003, SODA '03.

[37]  Raymond Laflamme,et al.  An Introduction to Quantum Computing , 2007, Quantum Inf. Comput..

[38]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[39]  Adnan Darwiche,et al.  A Logical Approach to Factoring Belief Networks , 2002, KR.

[40]  Margaret Martonosi,et al.  QDB: From Quantum Algorithms Towards Correct Quantum Programs , 2018, PLATEAU@SPLASH.

[41]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[42]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[43]  Kathryn B. Laskey Sensitivity analysis for probability assessments in Bayesian networks , 1995, IEEE Trans. Syst. Man Cybern..

[44]  R. Spekkens,et al.  Quantum common causes and quantum causal models , 2016, 1609.09487.

[45]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[46]  Igor L. Markov,et al.  Simulating Quantum Computation by Contracting Tensor Networks , 2008, SIAM J. Comput..

[47]  Yuhong Yang,et al.  Information Theory, Inference, and Learning Algorithms , 2005 .

[48]  Luc De Raedt,et al.  An Algebraic Prolog for Reasoning about Possible Worlds , 2011, AAAI.

[49]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[50]  Henry A. Kautz,et al.  Performing Bayesian Inference by Weighted Model Counting , 2005, AAAI.

[51]  Lov K. Grover From Schrödinger’s equation to the quantum search algorithm , 2001, quant-ph/0109116.

[52]  H. Neven,et al.  Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.

[53]  David Allen,et al.  Exploiting Evidence in Probabilistic Inference , 2005, UAI.

[54]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[55]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[56]  A. Harrow,et al.  Quantum Supremacy through the Quantum Approximate Optimization Algorithm , 2016, 1602.07674.

[57]  Č. Brukner,et al.  A graph-separation theorem for quantum causal models , 2014, 1406.0430.

[58]  Margaret Martonosi,et al.  Statistical Assertions for Validating Patterns and Finding Bugs in Quantum Programs , 2019, 2019 ACM/IEEE 46th Annual International Symposium on Computer Architecture (ISCA).

[59]  Nir Friedman,et al.  Probabilistic Graphical Models: Principles and Techniques - Adaptive Computation and Machine Learning , 2009 .

[60]  Patrick J. Coles,et al.  Variational Quantum Linear Solver: A Hybrid Algorithm for Linear Systems , 2019, 1909.05820.

[61]  Hsin-Yuan Huang,et al.  Near-term quantum algorithms for linear systems of equations , 2019, ArXiv.

[62]  Adnan Darwiche,et al.  A differential approach to inference in Bayesian networks , 2000, JACM.