The Performance of Some Rough Tests for Bivariate Normality Before and After Coordinate Transformations to Normality

Some rough tests for bivariate normality are employed in an attempt to quantify the intuitive notion that coordinate transformations to normality produce distributions which are “more bivariate normal” than the original variables. These tests are not rigorous procedures but are intuitively satisfying, based on natural statistics, and provide numerical measures of the “distance” of a bivariate distribution from the normal model. It is shown that, for a wide class of non-normal (X, Y) distributions, coordinate transformations to normality decrease this distance as measured by these tests. It is indicated how one may estimate the coordinate transformations and applications to correlation theory are explored.

[1]  W. G. Cochran Some Methods for Strengthening the Common χ 2 Tests , 1954 .

[2]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .

[3]  E. S. Pearson SOME NOTES ON SAMPLING TESTS WITH TWO VARIABLES , 1929 .

[4]  G. Hey A NEW METHOD OF EXPERIMENTAL SAMPLING ILLUSTRATED ON CERTAIN NON-NORMAL POPULATIONS , 1938 .

[5]  M. B. Cook Bi-variate k-statistics and cumulants of their joint sampling distribution. , 1951, Biometrika.

[6]  G. S. Watson,et al.  THE X2 GOODNESS-OF-FIT TEST FOR NORMAL DISTRIBUTIONS , 1957 .

[7]  C. Williams,et al.  The Choice of the Number and Width of Classes for the Chi-Square Test of Goodness of Fit , 1950 .

[8]  Maurice G. Kendall,et al.  THE DERIVATION OF MULTIVARIATE SAMPLING FORMULAE FROM UNIVARIATE FORMULAE BY SYMBOLIC OPERATION , 1940 .

[9]  Rory A. Fisher Statistical Methods for Research Workers. , 1926 .

[10]  G. H. Freeman,et al.  Note on an exact treatment of contingency, goodness of fit and other problems of significance. , 1951, Biometrika.

[11]  R. Fisher Statistical Methods for Research Workers , 1971 .

[12]  R. Fisher FREQUENCY DISTRIBUTION OF THE VALUES OF THE CORRELATION COEFFIENTS IN SAMPLES FROM AN INDEFINITELY LARGE POPU;ATION , 1915 .

[13]  T. W. Anderson An Introduction to Multivariate Statistical Analysis , 1959 .

[14]  M. Fréchet Sur les tableaux de correlation dont les marges sont donnees , 1951 .

[15]  E. S. Pearson,et al.  Further Experiments on the Sampling Distribution of the Correlation Coefficient , 1932 .

[16]  G. B. Wetherill,et al.  An Approximation to the Inverse Normal Function Suitable for the Generation of Random Normal Deviates on Electronic Computers , 1965 .

[17]  F. Massey,et al.  A Note on the Estimation of a Distribution Function by Confidence Limits , 1950 .

[18]  M. Tarter,et al.  Co-ordinate transformations to normality and the power of normal tests for independence , 1969 .

[19]  Anders Hald,et al.  Statistical Theory with Engineering Applications , 1952 .

[20]  M. Tarter,et al.  Estimation of the cumulative by fourier series methods and application to the insertion problem , 1968, ACM National Conference.

[21]  R. Plackett A Class of Bivariate Distributions , 1965 .

[22]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[23]  N. L. Johnson,et al.  Systems of frequency curves generated by methods of translation. , 1949, Biometrika.

[24]  T. W. Anderson,et al.  An Introduction to Multivariate Statistical Analysis , 1959 .

[25]  D. J. G. Farlie,et al.  The performance of some correlation coefficients for a general bivariate distribution , 1960 .

[26]  R. Fisher Contributions to mathematical statistics , 1951 .

[27]  Jerzy Neyman,et al.  The problem of inductive inference , 1955 .

[28]  M. Kendall,et al.  The advanced theory of statistics , 1945 .

[29]  R. Geary,et al.  Testing for Normality , 2003 .

[30]  D. Darling The Kolmogorov-Smirnov, Cramer-von Mises Tests , 1957 .

[31]  J. Wolfowitz,et al.  Confidence Limits for Continuous Distribution Functions , 1939 .

[32]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[33]  G. A. Baker The Significance of the Product-Moment Coefficient of Correlation with Special Reference to the Character of the Marginal Distributions , 1930 .

[34]  Joseph Berkson,et al.  Some Difficulties of Interpretation Encountered in the Application of the Chi-Square Test , 1938 .

[35]  FURTHER NOTES ON THE χ2 DISTRIBUTION , 1931 .

[36]  K. Mardia,et al.  Some contributions to contingency-type bivariate distributions. , 1967, Biometrika.

[37]  P. B. Simpson Note on the Estimation of a Bivariate Distribution Function , 1951 .

[38]  R. Kronmal,et al.  The Estimation of Probability Densities and Cumulatives by Fourier Series Methods , 1968 .

[39]  C. J. Burke,et al.  The use and misuse of the chi-square test. , 1949, Psychological bulletin.

[40]  F. Massey The Kolmogorov-Smirnov Test for Goodness of Fit , 1951 .

[41]  H. Riedwyl Goodness of Fit , 1967 .

[42]  A. Gayen,et al.  The frequency distribution of the product-moment correlation coefficient in random samples of any size drawn from non-normal universes. , 1951, Biometrika.

[43]  E. Gumbel Bivariate Logistic Distributions , 1961 .

[44]  G. P. Steck A note on contingency-type bivariate distributions , 1968 .

[45]  F. J. Anscombe Tests of Goodness of Fitt , 1963 .

[46]  H. Lilliefors On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown , 1967 .

[47]  A. Wald,et al.  On the Choice of the Number of Class Intervals in the Application of the Chi Square Test , 1942 .

[48]  E. S. Pearson A FURTHER DEVELOPMENT OF TESTS FOR NORMALITY , 1930 .

[49]  Z. Birnbaum Numerical Tabulation of the Distribution of Kolmogorov's Statistic for Finite Sample Size , 1952 .

[50]  H. F. Dunlap,et al.  An Empirical Determination of the Distribution of Means, Standard Deviations and Correlation Coefficients Drawn from Rectangular Populations , 1931 .

[51]  N. L. Franklin,et al.  Statistical Analysis in Chemistry and the Chemical Industry , 1955 .

[52]  R. Fisher 034: The Conditions Under Which x2 Measures the Discrepancy Between Observation and Hypothesis. , 1924 .

[53]  M. Tarter Inverse cumulative approximation and applications. , 1968, Biometrika.

[54]  P. R. Rider,et al.  ON THE DISTRIBUTION OF THE CORRELATION COEFFICIENT IN SMALL SAMPLES , 1932 .

[55]  N. L. Johnson,et al.  The probability integral transformation when parameters are estimated from the sample. , 1948, Biometrika.

[56]  Egon S. Pearson,et al.  THE DISTRIBUTION OF FREQUENCY CONSTANTS IN SMALL SAMPLES FROM NON-NORMAL SYMMETRICAL AND SKEW POPULATIONS , 1929 .

[57]  E. S. Pearson,et al.  ON THE USE AND INTERPRETATION OF CERTAIN TEST CRITERIA FOR PURPOSES OF STATISTICAL INFERENCE PART I , 1928 .

[58]  D. Darling,et al.  The Cramer-Smirnov Test in the Parametric Case , 1955 .

[59]  R. F.,et al.  Mathematical Statistics , 1944, Nature.

[60]  Michael E. Tarter,et al.  After the histogram what? a description of new computer methods for estimating the population density , 1967, ACM National Conference.

[61]  J B S HALDANE A note on non-normal correlation. , 1949, Biometrika.

[62]  E. Gumbel Bivariate Exponential Distributions , 1960 .

[63]  B. Sherman,et al.  A Random Variable Related to the Spacing of Sample Values , 1950 .

[64]  J. Kiefer,et al.  On Tests of Normality and Other Tests of Goodness of Fit Based on Distance Methods , 1955 .

[65]  W. G. Cochran The $\chi^2$ Test of Goodness of Fit , 1952 .

[66]  Pae-Tsi Yuan,et al.  On the Logarithmic Frequency Distribution and the Semi-Logarithmic Correlation Surface , 1933 .

[67]  M. Me,et al.  Estimation of the cumulative by Fourier series methods and application to the insertion problem , 1968 .