On order‐reducible sinc discretizations and block‐diagonal preconditioning methods for linear third‐order ordinary differential equations

By introducing a variable substitution we transform the two-point boundary value problem of a third-order ordinary differential equation into a system of two second-order ordinary differential equations. We discretize this order-reduced system of ordinary differential equations by both sinc-collocation and sinc-Galerkin methods, and average these two discretized linear systems to obtain the target system of linear equations. We prove that the discrete solution resulting from the linear system converges exponentially to the true solution of the order-reduced system of ordinary differential equations. The coefficient matrix of the linear system is of block two-by-two structure and each of its blocks is a combination of Toeplitz

[1]  Weiwei Sun,et al.  Optimal Error Estimates of the Legendre-Petrov-Galerkin Method for the Korteweg-de Vries Equation , 2001, SIAM J. Numer. Anal..

[2]  Sidney Spital,et al.  A Third Order Differential Equation (Donald E. Amos) , 1966 .

[3]  Michael K. Ng,et al.  Fast Iterative Methods for Sinc Systems , 2002, SIAM J. Matrix Anal. Appl..

[4]  Xiao-Qing Jin,et al.  Band Toeplitz preconditioners for block Toeplitz systems , 1996 .

[5]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[6]  O. Axelsson Iterative solution methods , 1995 .

[7]  Zhong-Zhi Bai,et al.  On Preconditioned Iterative Methods for Certain Time-Dependent Partial Differential Equations , 2009, SIAM J. Numer. Anal..

[8]  E. O. Tuck,et al.  A Numerical and Asymptotic Study of Some Third-Order Ordinary Differential Equations Relevant to Draining and Coating Flows , 1990, SIAM Rev..

[9]  T. Wolf,et al.  Linearisable Third-Order Ordinary Differential Equations and Generalised Sundman Transformations: The Case X′′′=0 , 2002 .

[10]  Nail H. Ibragimov,et al.  Linearization of third-order ordinary differential equations by point and contact transformations , 2005 .

[11]  Michael K. Ng Fast iterative methods for symmetric sinc-Galerkin systems , 1999 .

[12]  V. M. F. B.Sc.,et al.  LXXXV. Solutions of the boundary-layer equations , 1931 .

[13]  Weiwei Sun,et al.  A Legendre-Petrov-Galerkin and Chebyshev Collocation Method for Third-Order Differential Equations , 2000, SIAM J. Numer. Anal..

[14]  A. Wathen,et al.  Iterative Methods for Toeplitz Systems , 2005 .

[15]  Michael K. Ng,et al.  A hybrid preconditioner of banded matrix approximation and alternating direction implicit iteration for symmetric Sinc-Galerkin linear systems , 2003 .

[16]  Frederick A. Howes The asymptotic solution of a class of third-order boundary value problems arising in the theory of thin film flows , 1983 .

[17]  Michael K. Ng,et al.  Preconditioners for nonsymmetric block toeplitz-like-plus-diagonal linear systems , 2003, Numerische Mathematik.

[18]  Brian Duffy,et al.  A third-order differential equation arising in thin-film flows and relevant to Tanner's Law , 1997 .

[19]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[20]  Guy Grebot,et al.  The Characterization of Third Order Ordinary Differential Equations Admitting a Transitive Fiber-Preserving Point Symmetry Group , 1997 .

[21]  Kenneth L. Bowers,et al.  Sinc methods for quadrature and differential equations , 1987 .

[22]  S. Meleshko On linearization of third-order ordinary differential equations , 2006 .

[23]  Zhong-Zhi Bai Eigenvalue estimates for saddle point matrices of Hermitian and indefinite leading blocks , 2013, J. Comput. Appl. Math..

[24]  William Ford A Third-Order Differential Equation (M. A. Abdelkader) , 1992, SIAM Rev..

[25]  Chunxiong Zheng,et al.  Numerical simulation of a modified KdV equation on the whole real axis , 2006, Numerische Mathematik.

[26]  Xin Wen,et al.  Numerical solution to a linearized KdV equation on unbounded domain , 2008 .

[27]  Raymond H. Chan,et al.  On sinc discretization and banded preconditioning for linear third‐order ordinary differential equations , 2011, Numer. Linear Algebra Appl..

[28]  M. Mori,et al.  Double exponential transformation in the Sinc-collocation method for a boundary value problem with fourth-order ordinary differential equation , 2005 .

[29]  Nicole Fruehauf Numerical Methods Based On Sinc And Analytic Functions , 2016 .

[30]  Xiao-Qing Jin,et al.  Developments and Applications of Block Toeplitz Iterative Solvers , 2003 .

[31]  E. G. Wilson,et al.  A theory of the electrical properties of liquid metals II. Polyvalent metals , 1961 .

[32]  Xiao-Qing Jin A Note on Preconditioned Block Toeplitz Matrices , 1995, SIAM J. Sci. Comput..

[33]  Gene H. Golub,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[34]  Gene H. Golub,et al.  Block Triangular and Skew-Hermitian Splitting Methods for Positive-Definite Linear Systems , 2005, SIAM J. Sci. Comput..

[35]  Some third‐order ordinary differential equations , 2008 .

[36]  Michael K. Ng,et al.  On Preconditioned Iterative Methods for Burgers Equations , 2007, SIAM J. Sci. Comput..

[37]  N. SIAMJ.,et al.  A NEW DUAL-PETROV–GALERKIN METHOD FOR THIRD AND HIGHER ODD-ORDER DIFFERENTIAL EQUATIONS: APPLICATION TO THE KDV EQUATION∗ , 2003 .

[38]  Zhong-Zhi Bai,et al.  Structured preconditioners for nonsingular matrices of block two-by-two structures , 2005, Math. Comput..