A mixed mode fatigue crack model with the coupled X-FEM/LATIN method. Application to rolling contact fatigue (RCF)

A new numerical model for fatigue crack analysis is presented in this paper. This model based on linear elastic fracture mechanics for an homogeneous material, uses the extended finite element method (X-FEM). The loading conditions are simulated by normal and tangential contact loads moving steadily over the surface. 2D simulations are presented. The X-FEM stress intensity factors are compared with numerical ones obtained with a fatigue crack model [ 1 ].

[1]  Anthony Gravouil,et al.  Mise en œuvre d'un modèle numérique de fissures en mode mixte sous sollicitations tribologiques à partir de la méthode X-FEM , 2004 .

[2]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part I: Mechanical model , 2002 .

[3]  Toshio Nakamura,et al.  Three-Dimensional Stress Fields of Elastic Interface Cracks , 1991 .

[4]  M. C. Dubourg,et al.  Analysis of Multiple Fatigue Cracks—Part I: Theory , 1992 .

[5]  Pierre Ladevèze,et al.  Nonlinear Computational Structural Mechanics , 1999 .

[6]  D. Hills,et al.  Modelling of growth of three-dimensional cracks by a continuous distribution of dislocation loops , 1997 .

[7]  P. Alart,et al.  A mixed formulation for frictional contact problems prone to Newton like solution methods , 1991 .

[8]  Ted Belytschko,et al.  An extended finite element method for modeling crack growth with frictional contact , 2001 .

[9]  Laurent Champaney,et al.  Une nouvelle approche modulaire pour l'analyse d'assemblages de structures tridimensionnelles , 1996 .

[10]  Shuodao Wang,et al.  A Mixed-Mode Crack Analysis of Isotropic Solids Using Conservation Laws of Elasticity , 1980 .

[11]  M. C. Dubourg,et al.  A Predictive Rolling Contact Fatigue Crack Growth Model: Onset of Branching, Direction, and Growth—Role of Dry and Lubricated Conditions on Crack Patterns , 2002 .

[12]  J. Rice,et al.  The growth of slip surfaces in the progressive failure of over-consolidated clay , 1973, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[13]  T. Belytschko,et al.  Extended finite element method for three-dimensional crack modelling , 2000 .

[14]  David M. Parks,et al.  Antisymmetrical 3-D stress field near the crack front of a thin elastic plate , 1989 .

[15]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[16]  C. Shih,et al.  Elastic-Plastic Analysis of Cracks on Bimaterial Interfaces: Part I—Small Scale Yielding , 1988 .

[17]  John E. Dolbow,et al.  Domain integral formulation for stress intensity factor computation along curved three-dimensional interface cracks , 1998 .

[18]  J. Lions,et al.  Les inéquations en mécanique et en physique , 1973 .