Influence of impurities on solitons in the nonlinear LC transmission line.
暂无分享,去创建一个
This paper studies the propagation of solitons in the nonlinear LC transmission line (NLCTL) with capacitor impurity. Based on Kirchhoff's laws, the numerical simulation shows that the amplitude of the soliton will be increased or decreased when it is close to the positive or negative impurity. Then, it will be split into reflected and transmitted waves by both the positive and negative impurities. Furthermore, their final amplitude and propagating speeds are almost independent of the impurity polarity. The observations near the impurity can be understood in the physical picture of the linear uncoupled energy absorption. By these results, we find that the impurity-soliton interactions (ISIs) in NLCTLs for both inductance and capacitance impurities, which have been seen to be different before, actually can be unified. They also indicate that the ISIs in NLCTLs essentially can be integrated with those in many other soliton systems, such as the Frenkel-Kontorova model and hydrodynamics. Moreover, the impurity-induced influence on the NLCTL solitons can also be well interpreted in the framework of the nonlinear Schrödinger model with an impurity term derived from the discrete voltage propagation equations by means of the perturbation method.