Neural Approach for Modeling and Optimizing Si-MOSFET Manufacturing

An optimal design of semiconductor device and its process uniformity are critical factors affecting desired figure-of-merits as well as reducing fabrication cost of fixing possible malfunctioning in semiconductor manufacturing. Two main tasks in optimal device design for semiconductor manufacturing, i.e., parameter optimization and modeling, have been typically used either to characterize the devices by understanding how each parameter affects the device performances or to calibrate the parameters for SPICE circuit simulation. However, there still remains limitations in describing the relationship between all manufacturing parameters and figure-of-merits using several simple equations human experts can utilize. Even with the best model currently available, the optimal design of semiconductor device heavily relies on experiences of human experts and deals with time-consuming ad-hoc trials and non-holistic approaches. In this paper, we propose a new approach for data-based accurate electrical modeling of transistor, which is the most fundamental unit device of semiconductor, and fast optimization of its manufacturing parameters. Instead of the previous analytic approaches, finding finite equations derived from semiconductor physics, we utilize machine learning technique and neural networks to find appropriate modeling functions from data pairs of parameters and figure-of-merits. And for given desired figure-of-merits, we find optimal manufacturing parameters in holistic manner by using the learned functions of neural networks and fast gradient-based optimization method. Experimental results show that our neural-network-based-model directly estimate figure-of-merits with competitive accuracy and that our holistic optimization technique accurately and rapidly adapts the manufacturing parameters to meet desired figure-of-merits.

[1]  Dina Katabi,et al.  Circuit-GNN: Graph Neural Networks for Distributed Circuit Design , 2019, ICML.

[2]  G. Masetti,et al.  Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon , 1983, IEEE Transactions on Electron Devices.

[3]  Kaushik Roy,et al.  Double-gate MOSFETs with aymmetric drain underlap: A device-circuit co-design and optimization perspective for SRAM , 2009, 2009 Device Research Conference.

[4]  P. Werbos,et al.  Beyond Regression : "New Tools for Prediction and Analysis in the Behavioral Sciences , 1974 .

[5]  M. Meyyappan,et al.  Vertical gate-all-around junctionless nanowire transistors with asymmetric diameters and underlap lengths , 2014 .

[6]  M. Kakumu,et al.  New CMOS shallow junction well FET structure (CMOS-SJET) for low power-supply voltage , 1992, 1992 International Technical Digest on Electron Devices Meeting.

[7]  W. E. Gifford,et al.  Machine Learning-enhanced Multi-dimensional Co-Optimization of Sub-10nm Technology Node Options , 2019, 2019 IEEE International Electron Devices Meeting (IEDM).

[8]  D. Klaassen,et al.  A new recombination model for device simulation including tunneling , 1992 .

[9]  Xiaopei Zhang,et al.  Research of Science and Technology Strategic Base on the International Technology Roadmap for Semiconductors , 2018, EEET.

[10]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[11]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[12]  A GVSU,et al.  South Korea , 2015, Nature.

[13]  Xing Zhang,et al.  Variation improvement for manufacturable FINFET technology , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).

[14]  Asen Asenov,et al.  Process Variability for Devices at and beyond the 7 nm Node , 2018 .

[15]  Ru Huang,et al.  Experimental investigation and design optimization guidelines of characteristic variability in silicon nanowire CMOS technology , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[16]  C. Canali,et al.  Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature , 1975, IEEE Transactions on Electron Devices.

[17]  S. Qureshi,et al.  Asymmetric drain underlap dopant-segregated Schottky barrier ultrathin-body SOI MOSFET for low-power mixed-signal circuits , 2013 .

[18]  P. Chapman,et al.  ON THE METHOD OF STEEPEST DESCENTS , 2022 .

[19]  E.J. Nowak,et al.  The effective drive current in CMOS inverters , 2002, Digest. International Electron Devices Meeting,.

[20]  Mark Y. Liu,et al.  A 32nm logic technology featuring 2nd-generation high-k + metal-gate transistors, enhanced channel strain and 0.171μm2 SRAM cell size in a 291Mb array , 2008, 2008 IEEE International Electron Devices Meeting.

[21]  A. Khakifirooz,et al.  A Simple Semiempirical Short-Channel MOSFET Current–Voltage Model Continuous Across All Regions of Operation and Employing Only Physical Parameters , 2009, IEEE Transactions on Electron Devices.

[22]  Krystyna Kuźniar,et al.  Some methods of pre-processing input data for neural networks , 2017 .

[23]  Massimo Vanzi,et al.  A physically based mobility model for numerical simulation of nonplanar devices , 1988, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[24]  N. G. Nilsson,et al.  The temperature dependence of band-to-band Auger recombination in silicon , 1979 .

[25]  Feng Feng,et al.  Parametric Modeling of Microwave Components Using Adjoint Neural Networks and Pole-Residue Transfer Functions With EM Sensitivity Analysis , 2017, IEEE Transactions on Microwave Theory and Techniques.

[26]  J. G. Fossum,et al.  Computer-aided numerical analysis of silicon solar cells , 1976 .

[27]  Ken-ichi Funahashi,et al.  On the approximate realization of continuous mappings by neural networks , 1989, Neural Networks.

[28]  Weicong Na,et al.  Multivalued Neural Network Inverse Modeling and Applications to Microwave Filters , 2018, IEEE Transactions on Microwave Theory and Techniques.

[29]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[30]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[31]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .