Advanced Atmospheric Water Vapor DIAL Detection System
暂无分享,去创建一个
[1] R. Mcintyre,et al. Photon counting techniques with silicon avalanche photodiodes. , 1993, Applied optics.
[2] D. Schroder. Semiconductor Material and Device Characterization , 1990 .
[3] E. Browell,et al. Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis. , 1989, Applied optics.
[4] D. Oosterhof,et al. Prediction of the Life Cycle of a Supertyphoon with a High-Resolution Global Model , 1989 .
[5] H. Mckell,et al. Absorption coefficient of Si in the wavelength region between 0.80–1.16 μm , 1987 .
[6] T D Wilkerson,et al. Water vapor differential absorption lidar development and evaluation. , 1979, Applied optics.
[7] R. Measures. Laser remote sensing : fundamentals and applications , 1984 .
[8] Tamer F. Refaat,et al. Advanced water-vapor lidar detection system for aircraft and space deployment , 1999, Optics & Photonics.
[9] Norman P. Barnes,et al. A high energy diode-pumped Cr:LiSAF laser for water vapor differential absorption lidar , 1999 .
[10] Albert Paul Malvino. Digital Computer Electronics: An Introduction to MicroComputers , 1983 .
[11] J. Russell,et al. Design of Advanced Atmospheric Water Vapor Differential Absorption Lidar (DIAL) Detection System , 1999 .
[12] P. Hall. Radiometry and the Detection of Optical Radiation , 1984 .
[13] T. Daniel Walsh,et al. Optical systems design for a stratospheric lidar system. , 1995, Applied optics.
[14] E. Dereniak,et al. Optical radiation detectors , 1984 .
[15] Donald H. Lenschow,et al. LASE measurements of convective boundary layer development during SGP97 , 1998 .
[16] Tamer F. Refaat,et al. Advanced detectors, optics, and waveform digitizers for aircraft DIAL water vapor measurements , 1997, Optics & Photonics.
[17] Massimo Ghioni,et al. Avalanche detector with ultraclean response for time-resolved photon counting , 1998 .
[18] H. A. Weakliem,et al. Temperature dependence of the optical properties of silicon , 1979 .
[19] Albert Ansmann,et al. Advances in Atmospheric Remote Sensing with Lidar , 1997 .
[20] R. A. Logan,et al. Ionization Rates of Holes and Electrons in Silicon , 1964 .
[21] D. Starr,et al. The role of water vapor in climate. A strategic research plan for the proposed GEWEX water vapor project (GVaP) , 1991 .
[22] F. E. Terman,et al. Integrated Electronics: Analog and Digital Circuits and Systems , 1972 .
[23] Robert H. Redus,et al. Gain and noise in very high-gain avalanche photodiodes: theory and experiment , 1996, Optics & Photonics.
[24] M. Teich,et al. Fundamentals of Photonics , 1991 .
[25] R. J. McIntyre,et al. Recent developments in silicon avalanche photodiodes , 1985 .
[26] Tamer F. Refaat,et al. Drift-diffusion model for reach-through avalanche photodiodes , 2001 .
[27] Weiyou Chen,et al. PIN avalanche photodiodes model for circuit simulation , 1996 .
[28] Dieter Renker,et al. Wavelength dependence of avalanche photodiode (APD) parameters , 1997 .
[29] F. Tamer,et al. Temperature Control of Avalanche Photodiode Using Thermoelectric Cooler , 1999 .
[30] S. Mijalković,et al. Semiconductor physical electronics , 1997 .
[31] S. H. Melfi,et al. Raman lidar system for the measurement of water vapor and aerosols in the Earth's atmosphere. , 1992, Applied optics.
[32] William C. Edwards,et al. Performance Improvements to the Lidar Atmospheric Sensing Experiment (LASE) , 1998 .
[33] W B Grant,et al. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols. , 1994, Applied optics.
[34] T. Refaat,et al. Characterization of Advanced Avalanche Photodiodes for Water Vapor Lidar Receivers , 2000 .
[35] Albert Paul Malvino,et al. Digital computer electronics , 1977 .
[36] E. J. Lerner. Avalanche photodiodes can count the photons , 1996 .
[37] S P Willig. Operational amplifiers. , 1993, Biomedical instrumentation & technology.
[38] H. W. Ruegg,et al. An optimized avalanche photodiode , 1967 .
[39] Tamer F. Refaat,et al. Comparison between super low ionization ratio and reach through avalanche photodiode structures , 2000 .
[40] James C. Barnes,et al. Development of the Lidar Atmospheric Sensing Experiment (LASE): An Advanced Airborne DIAL Instrument , 1997 .
[41] C. Boisrobert,et al. Fiber Optic Communication Systems , 1979 .
[42] M. Omar,et al. Drift and diffusion of charge carriers in silicon and their empirical relation to the electric field , 1987 .
[43] F. M. Davidson,et al. Photon counting with silicon avalanche photodiodes , 1992 .
[44] K. M. van Vliet,et al. Noise Limitations in Solid State Photodetectors , 1967 .
[45] T. N. Krishnamurti,et al. Ensemble Forecasting of Hurricane Tracks , 1997 .
[46] C. R. Crowell,et al. Temperature dependence of avalanche multiplication in semiconductors , 1966 .
[47] Philip B. Russell,et al. LASE measurements of aerosols and water vapor during TARFOX , 1998 .
[48] E. V. Browell,et al. Differential absorption lidar sensing of ozone , 1989, Proc. IEEE.
[49] N. S. Higdon,et al. LASE Validation Experiment , 1997 .
[50] Tamer F. Refaat,et al. Advanced Detector and Waveform Digitizer for Water Vapor DIAL Systems , 1998 .
[51] J. Conradi. Temperature effects in silicon avalanche diodes , 1974 .
[52] William B. Grant,et al. Differential absorption lidar (DIAL) measurements from air and space , 1998 .
[53] Robert W. Christopherson. Geosystems: An Introduction to Physical Geography , 1992 .