Advanced Atmospheric Water Vapor DIAL Detection System

Measurement of atmospheric water vapor is very important for understanding the Earth''s climate and water cycle. The remote sensing Differential Absorption Lidar (DIAL) technique is a powerful method to perform such measurement from aircraft and space. This thesis describes a new advanced detection system, which incorporates major improvements regarding sensitivity and size. These improvements include a low noise advanced avalanche photodiode detector, a custom analog circuit, a 14-bit digitizer, a microcontroller for on board averaging and finally a fast computer interface. This thesis describes the design and validation of this new water vapor DIAL detection system which was integrated onto a small Printed Circuit Board (PCB) with minimal weight and power consumption. Comparing its measurements to an existing DIAL system for aerosol and water vapor profiling validated the detection system.

[1]  R. Mcintyre,et al.  Photon counting techniques with silicon avalanche photodiodes. , 1993, Applied optics.

[2]  D. Schroder Semiconductor Material and Device Characterization , 1990 .

[3]  E. Browell,et al.  Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis. , 1989, Applied optics.

[4]  D. Oosterhof,et al.  Prediction of the Life Cycle of a Supertyphoon with a High-Resolution Global Model , 1989 .

[5]  H. Mckell,et al.  Absorption coefficient of Si in the wavelength region between 0.80–1.16 μm , 1987 .

[6]  T D Wilkerson,et al.  Water vapor differential absorption lidar development and evaluation. , 1979, Applied optics.

[7]  R. Measures Laser remote sensing : fundamentals and applications , 1984 .

[8]  Tamer F. Refaat,et al.  Advanced water-vapor lidar detection system for aircraft and space deployment , 1999, Optics & Photonics.

[9]  Norman P. Barnes,et al.  A high energy diode-pumped Cr:LiSAF laser for water vapor differential absorption lidar , 1999 .

[10]  Albert Paul Malvino Digital Computer Electronics: An Introduction to MicroComputers , 1983 .

[11]  J. Russell,et al.  Design of Advanced Atmospheric Water Vapor Differential Absorption Lidar (DIAL) Detection System , 1999 .

[12]  P. Hall Radiometry and the Detection of Optical Radiation , 1984 .

[13]  T. Daniel Walsh,et al.  Optical systems design for a stratospheric lidar system. , 1995, Applied optics.

[14]  E. Dereniak,et al.  Optical radiation detectors , 1984 .

[15]  Donald H. Lenschow,et al.  LASE measurements of convective boundary layer development during SGP97 , 1998 .

[16]  Tamer F. Refaat,et al.  Advanced detectors, optics, and waveform digitizers for aircraft DIAL water vapor measurements , 1997, Optics & Photonics.

[17]  Massimo Ghioni,et al.  Avalanche detector with ultraclean response for time-resolved photon counting , 1998 .

[18]  H. A. Weakliem,et al.  Temperature dependence of the optical properties of silicon , 1979 .

[19]  Albert Ansmann,et al.  Advances in Atmospheric Remote Sensing with Lidar , 1997 .

[20]  R. A. Logan,et al.  Ionization Rates of Holes and Electrons in Silicon , 1964 .

[21]  D. Starr,et al.  The role of water vapor in climate. A strategic research plan for the proposed GEWEX water vapor project (GVaP) , 1991 .

[22]  F. E. Terman,et al.  Integrated Electronics: Analog and Digital Circuits and Systems , 1972 .

[23]  Robert H. Redus,et al.  Gain and noise in very high-gain avalanche photodiodes: theory and experiment , 1996, Optics & Photonics.

[24]  M. Teich,et al.  Fundamentals of Photonics , 1991 .

[25]  R. J. McIntyre,et al.  Recent developments in silicon avalanche photodiodes , 1985 .

[26]  Tamer F. Refaat,et al.  Drift-diffusion model for reach-through avalanche photodiodes , 2001 .

[27]  Weiyou Chen,et al.  PIN avalanche photodiodes model for circuit simulation , 1996 .

[28]  Dieter Renker,et al.  Wavelength dependence of avalanche photodiode (APD) parameters , 1997 .

[29]  F. Tamer,et al.  Temperature Control of Avalanche Photodiode Using Thermoelectric Cooler , 1999 .

[30]  S. Mijalković,et al.  Semiconductor physical electronics , 1997 .

[31]  S. H. Melfi,et al.  Raman lidar system for the measurement of water vapor and aerosols in the Earth's atmosphere. , 1992, Applied optics.

[32]  William C. Edwards,et al.  Performance Improvements to the Lidar Atmospheric Sensing Experiment (LASE) , 1998 .

[33]  W B Grant,et al.  Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols. , 1994, Applied optics.

[34]  T. Refaat,et al.  Characterization of Advanced Avalanche Photodiodes for Water Vapor Lidar Receivers , 2000 .

[35]  Albert Paul Malvino,et al.  Digital computer electronics , 1977 .

[36]  E. J. Lerner Avalanche photodiodes can count the photons , 1996 .

[37]  S P Willig Operational amplifiers. , 1993, Biomedical instrumentation & technology.

[38]  H. W. Ruegg,et al.  An optimized avalanche photodiode , 1967 .

[39]  Tamer F. Refaat,et al.  Comparison between super low ionization ratio and reach through avalanche photodiode structures , 2000 .

[40]  James C. Barnes,et al.  Development of the Lidar Atmospheric Sensing Experiment (LASE): An Advanced Airborne DIAL Instrument , 1997 .

[41]  C. Boisrobert,et al.  Fiber Optic Communication Systems , 1979 .

[42]  M. Omar,et al.  Drift and diffusion of charge carriers in silicon and their empirical relation to the electric field , 1987 .

[43]  F. M. Davidson,et al.  Photon counting with silicon avalanche photodiodes , 1992 .

[44]  K. M. van Vliet,et al.  Noise Limitations in Solid State Photodetectors , 1967 .

[45]  T. N. Krishnamurti,et al.  Ensemble Forecasting of Hurricane Tracks , 1997 .

[46]  C. R. Crowell,et al.  Temperature dependence of avalanche multiplication in semiconductors , 1966 .

[47]  Philip B. Russell,et al.  LASE measurements of aerosols and water vapor during TARFOX , 1998 .

[48]  E. V. Browell,et al.  Differential absorption lidar sensing of ozone , 1989, Proc. IEEE.

[49]  N. S. Higdon,et al.  LASE Validation Experiment , 1997 .

[50]  Tamer F. Refaat,et al.  Advanced Detector and Waveform Digitizer for Water Vapor DIAL Systems , 1998 .

[51]  J. Conradi Temperature effects in silicon avalanche diodes , 1974 .

[52]  William B. Grant,et al.  Differential absorption lidar (DIAL) measurements from air and space , 1998 .

[53]  Robert W. Christopherson Geosystems: An Introduction to Physical Geography , 1992 .