Wavenumber-Explicit Regularity Estimates on the Acoustic Single- and Double-Layer Operators

We prove new, sharp, wavenumber-explicit bounds on the norms of the Helmholtz single- and double-layer boundary-integral operators as mappings from $${L^2({\partial {\Omega }})}\rightarrow H^1({\partial {\Omega }})$$L2(∂Ω)→H1(∂Ω) (where $${\partial {\Omega }}$$∂Ω is the boundary of the obstacle). The new bounds are obtained using estimates on the restriction to the boundary of quasimodes of the Laplacian, building on recent work by the first author and collaborators. Our main motivation for considering these operators is that they appear in the standard second-kind boundary-integral formulations, posed in $${L^2({\partial {\Omega }})}$$L2(∂Ω), of the exterior Dirichlet problem for the Helmholtz equation. Our new wavenumber-explicit $${L^2({\partial {\Omega }})}\rightarrow H^1({\partial {\Omega }})$$L2(∂Ω)→H1(∂Ω) bounds can then be used in a wavenumber-explicit version of the classic compact-perturbation analysis of Galerkin discretisations of these second-kind equations; this is done in the companion paper (Galkowski, Müller, and Spence in Wavenumber-explicit analysis for the Helmholtz h-BEM: error estimates and iteration counts for the Dirichlet problem, 2017. arXiv:1608.01035).

[1]  B. Vainberg,et al.  ON THE SHORT WAVE ASYMPTOTIC BEHAVIOUR OF SOLUTIONS OF STATIONARY PROBLEMS AND THE ASYMPTOTIC BEHAVIOUR AS t???? OF SOLUTIONS OF NON-STATIONARY PROBLEMS , 1975 .

[2]  Cathleen S. Morawetz,et al.  Decay for solutions of the exterior problem for the wave equation , 1975 .

[3]  J. Jodeit,et al.  Potential techniques for boundary value problems on C1-domains , 1978 .

[4]  Richard B. Melrose,et al.  Singularities of boundary value problems. I , 1978 .

[5]  G. Verchota Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains , 1984 .

[6]  Lars Hr̲mander,et al.  The Analysis of Linear Partial Differential Operators III: Pseudo-Differential Operators , 1985 .

[7]  Michael Taylor,et al.  Near peak scattering and the corrected Kirchhoff approximation for a convex obstacle , 1985 .

[8]  Mitsuru Ikawa,et al.  Decay of solutions of the wave equation in the exterior of several convex bodies , 1988 .

[9]  Martin Costabel,et al.  Boundary Integral Operators on Lipschitz Domains: Elementary Results , 1988 .

[10]  G. C. Hsiao,et al.  Surface gradients and continuity properties for some integral operators in classical scattering theory , 1989 .

[11]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[12]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[13]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[14]  Allan Greenleaf,et al.  Fourier integral operators with fold singularities. , 1994 .

[15]  K. Atkinson The Numerical Solution of Integral Equations of the Second Kind , 1997 .

[16]  Y. Meyer,et al.  Wavelets: Calderón-Zygmund and Multilinear Operators , 1997 .

[17]  Kendall E. Atkinson The Numerical Solution of Integral Equations of the Second Kind: Index , 1997 .

[18]  Daniel Tataru,et al.  ON THE REGULARITY OF BOUNDARY TRACES FOR THE WAVE EQUATION , 1998 .

[19]  Marius Mitrea,et al.  Boundary layer methods for Lipschitz domains in Riemannian manifolds , 1999 .

[20]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[21]  P. Gérard,et al.  Restrictions of the Laplace-Beltrami eigenfunctions to submanifolds , 2005, math/0506394.

[22]  Stephen Langdon,et al.  A Galerkin Boundary Element Method for High Frequency Scattering by Convex Polygons , 2007, SIAM J. Numer. Anal..

[23]  Ivan G. Graham,et al.  A hybrid numerical-asymptotic boundary integral method for high-frequency acoustic scattering , 2007, Numerische Mathematik.

[24]  Olaf Steinbach,et al.  Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements , 2007 .

[25]  Peter Monk,et al.  Wave-Number-Explicit Bounds in Time-Harmonic Scattering , 2008, SIAM J. Math. Anal..

[26]  Fernando Reitich,et al.  Analysis of Multiple Scattering Iterations for High-frequency Scattering Problems. I: the Two-dimensional Case Analysis of Multiple Scattering Iterations for High-frequency Scattering Problems. I: the Two-dimensional Case , 2006 .

[27]  Melissa Tacy,et al.  Semiclassical L p Estimates of Quasimodes on Submanifolds , 2009, 0905.2240.

[28]  I. Graham,et al.  Condition number estimates for combined potential boundary integral operators in acoustic scattering , 2009 .

[29]  Andrew Hassell,et al.  Semiclassical Lp Estimates of Quasimodes on Curved Hypersurfaces , 2010, 1002.1119.

[30]  Akash Anand,et al.  Analysis of multiple scattering iterations for high-frequency scattering problems. II: The three-dimensional scalar case , 2009, Numerische Mathematik.

[31]  C. Schwab,et al.  Boundary Element Methods , 2010 .

[32]  I. Graham,et al.  A new frequency‐uniform coercive boundary integral equation for acoustic scattering , 2011 .

[33]  Stuart C. Hawkins,et al.  A fully discrete Galerkin method for high frequency exterior acoustic scattering in three dimensions , 2011, J. Comput. Phys..

[34]  Stephen Langdon,et al.  Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering* , 2012, Acta Numerica.

[35]  Andrew Hassell,et al.  Exterior mass estimates and L2-restriction bounds for neumann data along hypersurfaces , 2013, 1303.4319.

[36]  Jens Markus Melenk,et al.  A High Frequency hp Boundary Element Method for Scattering by Convex Polygons , 2013, SIAM J. Numer. Anal..

[37]  Andrea Moiola,et al.  Is the Helmholtz Equation Really Sign-Indefinite? , 2014, SIAM Rev..

[38]  Jeffrey Galkowski,et al.  Sharp norm estimates of layer potentials and operators at high frequency , 2014, 1403.6576.

[39]  Melissa Tacy Semiclassical L^2 estimates for restrictions of the quantisation of normal velocity to interior hypersurfaces , 2014 .

[40]  Stephen Langdon,et al.  A frequency-independent boundary element method for scattering by two-dimensional screens and apertures , 2014, 1401.2786.

[41]  Euan A. Spence,et al.  Wavenumber-Explicit Bounds in Time-Harmonic Acoustic Scattering , 2014, SIAM J. Math. Anal..

[42]  S. Chandler-Wilde,et al.  Wavenumber-Explicit Continuity and Coercivity Estimates in Acoustic Scattering by Planar Screens , 2014, 1407.6863.

[43]  Daan Huybrechs,et al.  Extraction of Uniformly Accurate Phase Functions Across Smooth Shadow Boundaries in High Frequency Scattering Problems , 2014, SIAM J. Appl. Math..

[44]  Stephen Langdon,et al.  A high frequency boundary element method for scattering by a class of nonconvex obstacles , 2014, Numerische Mathematik.

[45]  David P. Hewett,et al.  Shadow boundary effects in hybrid numerical-asymptotic methods for high-frequency scattering , 2015, European Journal of Applied Mathematics.

[46]  Martin J. Gander,et al.  Applying GMRES to the Helmholtz equation with shifted Laplacian preconditioning: what is the largest shift for which wavenumber-independent convergence is guaranteed? , 2015, Numerische Mathematik.

[47]  Euan A. Spence,et al.  Coercivity of Combined Boundary Integral Equations in High‐Frequency Scattering , 2015 .

[48]  Jeffrey Galkowski,et al.  Restriction Bounds for the Free Resolvent and Resonances in Lossy Scattering , 2014, 1401.6243.

[49]  Jens Markus Melenk,et al.  When is the error in the $$h$$h-BEM for solving the Helmholtz equation bounded independently of $$k$$k? , 2015 .

[50]  Jared Wunsch,et al.  Sharp High-Frequency Estimates for the Helmholtz Equation and Applications to Boundary Integral Equations , 2015, SIAM J. Math. Anal..

[51]  S. Chandler-Wilde,et al.  Sobolev Spaces on Non-Lipschitz Subsets of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{doc , 2016, Integral Equations and Operator Theory.

[52]  S. Chandler-Wilde,et al.  Sobolev Spaces on Non-Lipschitz Subsets of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{doc , 2017, Integral Equations and Operator Theory.

[53]  Fatih Ecevit,et al.  A Galerkin BEM for high-frequency scattering problems based on frequency dependent changes of variables , 2016, 1609.02216.

[54]  Fatih Ecevit,et al.  Frequency-adapted Galerkin boundary element methods for convex scattering problems , 2017, Numerische Mathematik.

[55]  Fatih Ecevit,et al.  Frequency independent solvability of surface scattering problems , 2018 .

[56]  Eike Hermann Müller,et al.  Wavenumber-explicit analysis for the Helmholtz h-BEM: error estimates and iteration counts for the Dirichlet problem , 2016, Numerische Mathematik.

[57]  Jeffrey Galkowski,et al.  Distribution of Resonances in Scattering by Thin Barriers , 2014, Memoirs of the American Mathematical Society.

[58]  S. Dyatlov,et al.  Mathematical Theory of Scattering Resonances , 2019, Graduate Studies in Mathematics.

[59]  Semiclassical analysis , 2019, Graduate Studies in Mathematics.

[60]  Simon N. Chandler-Wilde,et al.  High-frequency Bounds for the Helmholtz Equation Under Parabolic Trapping and Applications in Numerical Analysis , 2017, SIAM J. Math. Anal..