Long-Time Equilibration Can Determine Transient Thermality

When two initially thermal many-body systems start interacting strongly, their transient states quickly become non-Gibbsian, even if the systems eventually equilibrate. To see beyond this apparent lack of structure during the transient regime, we use a refined notion of thermality, which we call g-local. A system is g-locally thermal if the states of all its small subsystems are marginals of global thermal states. We numerically demonstrate for two harmonic lattices that whenever the total system equilibrates in the long run, each lattice remains g-locally thermal at all times, including the transient regime. This is true even when the lattices have long-range interactions within them. In all cases, we find that the equilibrium is described by the generalized Gibbs ensemble, with three-dimensional lattices requiring special treatment due to their extended set of conserved charges. We compare our findings with the well-known two-temperature model. While its standard form is not valid beyond weak coupling, we show that at strong coupling it can be partially salvaged by adopting the concept of a g-local temperature.

[1]  Nicole Yunger Halpern,et al.  Non-Abelian symmetry can increase entanglement entropy , 2022, Physical Review B.

[2]  A. Winter,et al.  Classicality, Markovianity, and local detailed balance from pure-state dynamics , 2022, Physical Review A.

[3]  'Alvaro M. Alhambra,et al.  Quantum Many-Body Systems in Thermal Equilibrium , 2022, PRX Quantum.

[4]  C. Back,et al.  Phonon‐Dominated Energy Transport in Purely Metallic Heterostructures , 2022, Advanced Functional Materials.

[5]  D. Segal,et al.  Quantum thermal transport beyond second order with the reaction coordinate mapping. , 2022, The Journal of chemical physics.

[6]  R. Blatt,et al.  Experimental Observation of Thermalization with Noncommuting Charges , 2022, PRX Quantum.

[7]  C. L. Latune Steady state in strong system-bath coupling regime: Reaction coordinate versus perturbative expansion. , 2021, Physical review. E.

[8]  J. Anders,et al.  Open quantum system dynamics and the mean force Gibbs state , 2021, AVS Quantum Science.

[9]  A. Trushechkin Quantum master equations and steady states for the ultrastrong-coupling limit and the strong-decoherence limit , 2021, Physical Review A.

[10]  J. Anders,et al.  Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. , 2021, Physical review letters.

[11]  C. Henkel Heat Transfer and Entanglement–Non‐Equilibrium Correlation Spectra of Two Quantum Oscillators , 2021, Annalen der Physik.

[12]  Keiji Matsumoto,et al.  Undecidability in quantum thermalization , 2020, Nature Communications.

[13]  Ntwali Bashige Toussaint,et al.  Generation of High-Resolution Handwritten Digits with an Ion-Trap Quantum Computer , 2020, Physical Review X.

[14]  J. Parrondo,et al.  Non-Abelian Quantum Transport and Thermosqueezing Effects , 2020, PRX Quantum.

[15]  M. Hehn,et al.  Heat Transport without Heating?—An Ultrafast X‐Ray Perspective into a Metal Heterostructure , 2020, Advanced Functional Materials.

[16]  A. Winter,et al.  First and Second Law of Quantum Thermodynamics: A Consistent Derivation Based on a Microscopic Definition of Entropy , 2020, PRX Quantum.

[17]  X. Waintal,et al.  What Limits the Simulation of Quantum Computers? , 2020, Physical Review X.

[18]  K. Hovhannisyan,et al.  Charging assisted by thermalization , 2020 .

[19]  Tomotaka Kuwahara,et al.  Gaussian concentration bound and Ensemble equivalence in generic quantum many-body systems including long-range interactions , 2019, Annals of Physics.

[20]  U. Seifert Entropy and the second law for driven, or quenched, thermally isolated systems , 2019, 1906.00933.

[21]  D. J. Twitchen,et al.  A Ten-Qubit Solid-State Spin Register with Quantum Memory up to One Minute , 2019, Physical Review X.

[22]  Luis A. Correa,et al.  Thermometry in the quantum regime: recent theoretical progress , 2018, Journal of Physics A: Mathematical and Theoretical.

[23]  K. Matsuno Equilibration , 2018, Protobiology.

[24]  J. Eisert,et al.  Equilibration towards generalized Gibbs ensembles in non-interacting theories , 2018, SciPost Physics.

[25]  M. Srednicki,et al.  Relaxation to Gaussian and generalized Gibbs states in systems of particles with quadratic Hamiltonians. , 2018, Physical review. E.

[26]  C. Back,et al.  Layer specific observation of slow thermal equilibration in ultrathin metallic nanostructures by femtosecond X-ray diffraction , 2018, Nature Communications.

[27]  J. Anders,et al.  Energy-temperature uncertainty relation in quantum thermodynamics , 2018, Nature Communications.

[28]  Tatsuhiko N. Ikeda,et al.  Thermalization and prethermalization in isolated quantum systems: a theoretical overview , 2017, 1712.08790.

[29]  K. Hovhannisyan,et al.  Measuring the temperature of cold many-body quantum systems , 2017, Physical Review B.

[30]  I. Bloch,et al.  Quantum simulations with ultracold atoms in optical lattices , 2017, Science.

[31]  K. Carva,et al.  Theory of out-of-equilibrium ultrafast relaxation dynamics in metals , 2017, 1708.01470.

[32]  M. Rigol,et al.  Thermalization near Integrability in a Dipolar Quantum Newton's Cradle , 2017, 1707.07031.

[33]  M. Lukin,et al.  Probing many-body dynamics on a 51-atom quantum simulator , 2017, Nature.

[34]  S. Campbell,et al.  Global and local thermometry schemes in coupled quantum systems , 2017, 1705.01898.

[35]  J. Eisert,et al.  Strong Coupling Corrections in Quantum Thermodynamics. , 2017, Physical review letters.

[36]  C. Karrasch,et al.  Solvable Hydrodynamics of Quantum Integrable Systems. , 2017, Physical review letters.

[37]  Christopher Jarzynski,et al.  Stochastic and Macroscopic Thermodynamics of Strongly Coupled Systems , 2017 .

[38]  F. Brandão,et al.  Thermalization and Return to Equilibrium on Finite Quantum Lattice Systems. , 2016, Physical review letters.

[39]  H. Tasaki On the Local Equivalence Between the Canonical and the Microcanonical Ensembles for Quantum Spin Systems , 2016, Journal of Statistical Physics.

[40]  W. Leitenberger,et al.  Persistent nonequilibrium dynamics of the thermal energies in the spin and phonon systems of an antiferromagnet , 2016, Structural dynamics.

[41]  Aaron C. E. Lee,et al.  Observation of prethermalization in long-range interacting spin chains , 2016, Science Advances.

[42]  B. Doyon,et al.  Emergent hydrodynamics in integrable quantum systems out of equilibrium , 2016, 1605.07331.

[43]  D. Dalvit,et al.  Failure of local thermal equilibrium in quantum friction , 2016, 2016 Progress in Electromagnetic Research Symposium (PIERS).

[44]  M. Rigol,et al.  Generalized Gibbs ensemble in integrable lattice models , 2016, 1604.03990.

[45]  F. Essler,et al.  Quench dynamics and relaxation in isolated integrable quantum spin chains , 2016, 1603.06452.

[46]  T. Ala‐Nissila,et al.  Heat flux and information backflow in cold environments , 2016, 1603.04902.

[47]  U. Seifert First and Second Law of Thermodynamics at Strong Coupling. , 2015, Physical review letters.

[48]  L. Masanes,et al.  Thermalization and Canonical Typicality in Translation-Invariant Quantum Lattice Systems , 2015, Communications in Mathematical Physics.

[49]  Robert H. Swendsen,et al.  Continuity of the entropy of macroscopic quantum systems. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  R. Ernstorfer,et al.  Electron-Phonon Coupling and Energy Flow in a Simple Metal beyond the Two-Temperature Approximation , 2015, 1507.03743.

[51]  Stefano Pirandola,et al.  Quantum Fidelity for Arbitrary Gaussian States. , 2015, Physical review letters.

[52]  A. Ac'in,et al.  Locality of temperature in spin chains , 2015, 1506.04060.

[53]  Vittorio Giovannetti,et al.  Local quantum thermal susceptibility , 2015, Nature Communications.

[54]  Jens Eisert,et al.  Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems , 2015, Reports on progress in physics. Physical Society.

[55]  Marcus Cramer,et al.  Equivalence of Statistical Mechanical Ensembles for Non-Critical Quantum Systems , 2015, 1502.03263.

[56]  Igor E. Mazets,et al.  Experimental observation of a generalized Gibbs ensemble , 2014, Science.

[57]  R. Mann,et al.  Quantum Thermometry , 2014, 1405.5918.

[58]  B. Liao,et al.  Generalized two-temperature model for coupled phonon-magnon diffusion. , 2014, Physical review letters.

[59]  M. Fagotti On conservation laws, relaxation and pre-relaxation after a quantum quench , 2014, 1401.1064.

[60]  Nathan Wiebe,et al.  Thermalization and Canonical Typicality in Translation-Invariant Quantum Lattice Systems , 2013, 1312.7420.

[61]  J. Eisert,et al.  Locality of temperature , 2013, 1309.0816.

[62]  Roman Orus,et al.  A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.

[63]  Nicolas C. Menicucci,et al.  Detectors for probing relativistic quantum physics beyond perturbation theory , 2012, 1212.1973.

[64]  Wei Wang,et al.  Limits to thermal transport in nanoscale metal bilayers due to weak electron-phonon coupling in Au and Cu. , 2012, Physical review letters.

[65]  J. Taylor,et al.  Equilibrium states of open quantum systems in the strong coupling regime. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  Michael J. Biercuk,et al.  Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins , 2012, Nature.

[67]  Paulina Marian,et al.  Uhlmann fidelity between two-mode Gaussian states , 2011, 1111.7067.

[68]  I. Mazets,et al.  Relaxation and Prethermalization in an Isolated Quantum System , 2011, Science.

[69]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[70]  Peter Balling,et al.  Ultra-short pulse laser ablation of copper, silver and tungsten: experimental data and two-temperature model simulations , 2011 .

[71]  Antonio Acin,et al.  Intensive temperature and quantum correlations for refined quantum measurements , 2011, 1102.5710.

[72]  Alessandro Silva,et al.  Colloquium: Nonequilibrium dynamics of closed interacting quantum systems , 2010, 1007.5331.

[73]  J. Eisert,et al.  A quantum central limit theorem for non-equilibrium systems: exact local relaxation of correlated states , 2009, 0911.2475.

[74]  CNRS,et al.  Statistical mechanics and dynamics of solvable models with long-range interactions , 2009, 0907.0323.

[75]  J. Shaffer,et al.  Observation of ultralong-range Rydberg molecules , 2009, Nature.

[76]  A. J. Short,et al.  Quantum mechanical evolution towards thermal equilibrium. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[77]  J. Anders Thermal state entanglement in harmonic lattices , 2008, 0803.1102.

[78]  Zhibin Lin,et al.  Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium , 2008 .

[79]  U. Schollwock,et al.  Dephasing and the steady state in quantum many-particle systems. , 2007, Physical review letters.

[80]  Bo N. J. Persson,et al.  Near-field radiative heat transfer and noncontact friction , 2007 .

[81]  M. Rigol,et al.  Thermalization and its mechanism for generic isolated quantum systems , 2007, Nature.

[82]  F. Illuminati,et al.  Entanglement in continuous-variable systems: recent advances and current perspectives , 2007, quant-ph/0701221.

[83]  E. Carpene Ultrafast laser irradiation of metals: Beyond the two-temperature model , 2006 .

[84]  M. Rigol,et al.  Relaxation in a completely integrable many-body quantum system: an ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons. , 2006, Physical review letters.

[85]  D. Weiss,et al.  A quantum Newton's cradle , 2006, Nature.

[86]  A. J. Short,et al.  The foundations of statistical mechanics from entanglement: Individual states vs. averages , 2005, quant-ph/0511225.

[87]  J. Lebowitz,et al.  Canonical typicality. , 2005, Physical review letters.

[88]  Lan Jiang,et al.  Improved Two-Temperature Model and Its Application in Ultrashort Laser Heating of Metal Films , 2005 .

[89]  J. Eisert,et al.  Correlations, spectral gap and entanglement in harmonic quantum systems on generic lattices , 2005, quant-ph/0509167.

[90]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[91]  J. Bigot,et al.  Laser-Induced Ultrafast Demagnetization: Femtomagnetism, a New Frontier? , 2002 .

[92]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[93]  S. Ruffo,et al.  Inequivalence of ensembles in a system with long-range interactions. , 2001, Physical review letters.

[94]  Jeroen van de Graaf,et al.  Cryptographic Distinguishability Measures for Quantum-Mechanical States , 1997, IEEE Trans. Inf. Theory.

[95]  H. Scutaru,et al.  Fidelity for displaced squeezed thermal states and the oscillator semigroup , 1997, quant-ph/9708013.

[96]  Merle,et al.  Ultrafast spin dynamics in ferromagnetic nickel. , 1996, Physical review letters.

[97]  Max TegmarkLeehwa Yeh Steady states of harmonic oscillator chains and shortcomings of harmonic heat baths , 1994, gr-qc/9401006.

[98]  Allen,et al.  Theory of thermal relaxation of electrons in metals. , 1987, Physical review letters.

[99]  Reibold,et al.  Strong damping and low-temperature anomalies for the harmonic oscillator. , 1985, Physical review. A, General physics.

[100]  R. M. Helsdon,et al.  Zeroth law of thermodynamics , 1982 .

[101]  Ford,et al.  On the quantum langevin equation , 1981, Physical review. A, General physics.

[102]  D. Walton,et al.  Effect of magnon-phonon thermal relaxation on heat transport by magnons , 1977 .

[103]  S. Anisimov,et al.  Electron emission from metal surfaces exposed to ultrashort laser pulses , 1974 .

[104]  M. Hove,et al.  Theory of Radiative Heat Transfer between Closely Spaced Bodies , 1971 .

[105]  G. W. Ford,et al.  Statistical Mechanics of Assemblies of Coupled Oscillators , 1965 .

[106]  W. Louisell,et al.  Transformation Having Applications in Quantum Mechanics , 1965 .

[107]  J. Kirkwood Statistical Mechanics of Fluid Mixtures , 1935 .

[108]  Lars Onsager,et al.  Theories of Concentrated Electrolytes. , 1933 .

[109]  T. Contini,et al.  Correlations , 1920, Botanical Gazette.

[110]  Nicole Yunger Halpern,et al.  Experimental observation of thermalisation with noncommuting charges , 2022 .

[111]  H. Miller Hamiltonian of Mean Force for Strongly-Coupled Systems , 2018 .

[112]  H. Hees,et al.  Statistical Physics , 2004 .

[113]  U. Nowak,et al.  Slow recovery of the magnetisation after a sub-picosecond heat pulse , 2007 .

[114]  T. Paul,et al.  Quantum computation and quantum information , 2001, SOEN.

[115]  G. Mahler,et al.  Emergence of thermodynamic behavior within composite quantum systems , 2005, quant-ph/0509110.

[116]  Barry Simon,et al.  The statistical mechanics of lattice gases , 1993 .

[117]  D. Tompsett Conservation laws , 1987 .

[118]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[119]  G. V. Chester,et al.  Solid State Physics , 2000 .

[120]  L. Landau,et al.  statistical-physics-part-1 , 1958 .

[121]  J. Williamson On the Algebraic Problem Concerning the Normal Forms of Linear Dynamical Systems , 1936 .

[122]  I. Miyazaki,et al.  AND T , 2022 .