Membrane elasticity in giant vesicles with fluid phase coexistence.

Biological membranes are known to contain compositional heterogeneities, often termed rafts, with distinguishable composition and function, and these heterogeneities participate in vigorous transport processes. Membrane lipid phase coexistence is expected to modulate these processes through the differing mechanical properties of the bulk domains and line tension at phase boundaries. In this contribution, we compare the predictions from a shape theory derived for vesicles with fluid phase coexistence to the geometry of giant unilamellar vesicles with coexisting liquid-disordered (L(d)) and liquid-ordered (L(o)) phases. We find a bending modulus for the L(o) phase higher than that of the L(d) phase and a saddle-splay (Gauss) modulus difference with the Gauss modulus of the L(o) phase being more negative than the L(d) phase. The Gauss modulus critically influences membrane processes that change topology, such as vesicle fission or fusion, and could therefore be of significant biological relevance in heterogeneous membranes. Our observations of experimental vesicle geometries being modulated by Gaussian curvature moduli differences confirm the prediction by the theory of Juelicher and Lipowsky.

[1]  J. Zimmerberg,et al.  An elastic theory for line tension at a boundary separating two lipid monolayer regions of different thickness , 2004 .

[2]  Ivan R. Nabi,et al.  Caveolae/raft-dependent endocytosis , 2003, The Journal of cell biology.

[3]  U. Seifert,et al.  Mapping vesicle shapes into the phase diagram: A comparison of experiment and theory , 1996, cond-mat/9612151.

[4]  David Andelman,et al.  Equilibrium shape of two-component unilamellar membranes and vesicles , 1992 .

[5]  Juan S. Bonifacino,et al.  Coat proteins: shaping membrane transport , 2003, Nature Reviews Molecular Cell Biology.

[6]  J. Korlach,et al.  Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Manfredo P. do Carmo,et al.  Differential geometry of curves and surfaces , 1976 .

[8]  Samuel A. Safran,et al.  Curvature elasticity of thin films , 1999 .

[9]  W. Huttner,et al.  Implications of lipid microdomains for membrane curvature, budding and fission. , 2001, Current opinion in cell biology.

[10]  Jean-Marc Allain,et al.  Biphasic vesicle: instability induced by adsorptionof protein s , 2004 .

[11]  J. Jenkins,et al.  Static equilibrium configurations of a model red blood cell , 1977, Journal of mathematical biology.

[12]  M. Vrljic,et al.  Liquid-liquid immiscibility in membranes. , 2003, Annual review of biophysics and biomolecular structure.

[13]  I. Bivas,et al.  Temperature and Chain Length Effects on Bending Elasticity of Phosphatidylcholine Bilayers , 1994 .

[14]  Reinhard Lipowsky,et al.  Domains in membranes and vesicles , 2003 .

[15]  E. Ikonen,et al.  Functional rafts in cell membranes , 1997, Nature.

[16]  G. Feigenson,et al.  Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol: nanoscopic domain formation driven by cholesterol. , 2001, Biophysical journal.

[17]  M. Edidin The state of lipid rafts: from model membranes to cells. , 2003, Annual review of biophysics and biomolecular structure.

[18]  M. Mezei,et al.  Effect of Cholesterol on the Properties of Phospholipid Membranes. 3. Local Lateral Structure , 2004 .

[19]  M. Angelova,et al.  Phospholipase A2 promotes raft budding and fission from giant liposomes. , 2004, Chemistry and physics of lipids.

[20]  Sarah L Veatch,et al.  Organization in lipid membranes containing cholesterol. , 2002, Physical review letters.

[21]  E. Ikonen,et al.  Roles of lipid rafts in membrane transport. , 2001, Current opinion in cell biology.

[22]  W. Gelbart,et al.  Molecular theory of curvature elasticity in surfactant films , 1990 .

[23]  Sarah L Veatch,et al.  Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. , 2003, Biophysical journal.

[24]  Seifert,et al.  Shape transformations of vesicles: Phase diagram for spontaneous- curvature and bilayer-coupling models. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[25]  Saxena,et al.  Phase separation and shape deformation of two-phase membranes , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[26]  F. Maxfield,et al.  Role of Membrane Organization and Membrane Domains in Endocytic Lipid Trafficking , 2000, Traffic.

[27]  R. Templer,et al.  Gaussian curvature modulus of an amphiphilic monolayer , 1998 .

[28]  I. Bivas,et al.  Bending elasticity and thermal fluctuations of lipid membranes. Theoretical and experimental requirements , 1989 .

[29]  E. Jakobsson,et al.  Cholesterol-induced modifications in lipid bilayers: a simulation study. , 2002, Biophysical journal.

[30]  E. Evans,et al.  Thermomechanical and transition properties of dimyristoylphosphatidylcholine/cholesterol bilayers. , 1988, Biochemistry.

[31]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[32]  Greg Huber,et al.  Fluid-membrane tethers: minimal surfaces and elastic boundary layers. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  R. Lipowsky,et al.  Domain-induced budding of vesicles. , 1993, Physical review letters.

[34]  G. Gompper,et al.  Phase behavior of two-component membranes , 2002 .

[35]  Reinhard Lipowsky,et al.  Budding of membranes induced by intramembrane domains , 1992 .

[36]  Gerhard Gompper,et al.  Mobility and elasticity of self-assembled membranes. , 1999 .

[37]  Watt W. Webb,et al.  Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension , 2003, Nature.

[38]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .

[39]  J. Bonifacino,et al.  The Mechanisms of Vesicle Budding and Fusion , 2004, Cell.

[40]  M. Prieto,et al.  Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts. , 2003, Biophysical journal.

[41]  E Gratton,et al.  Two photon fluorescence microscopy of coexisting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures. , 2000, Biophysical journal.

[42]  Petra Schwille,et al.  Probing Lipid Mobility of Raft-exhibiting Model Membranes by Fluorescence Correlation Spectroscopy* , 2003, Journal of Biological Chemistry.

[43]  James T. Jenkins,et al.  The Equations of Mechanical Equilibrium of a Model Membrane , 1977 .

[44]  A. Petrov,et al.  Elastic and flexoelectic aspects of out-of-plane fluctuations in biological and model membranes , 1984 .

[45]  G. Gompper,et al.  Self-avoiding linear and star polymers anchored to membranes. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  E. Evans,et al.  Effect of chain length and unsaturation on elasticity of lipid bilayers. , 2000, Biophysical journal.

[47]  H. Duwe,et al.  Bending elasticity and thermal excitations of lipid bilayer vesicles: Modulation by solutes , 1990 .

[48]  B. Smit,et al.  Simulating the effect of surfactant structure on bending moduli of monolayers. , 2004, The Journal of chemical physics.

[49]  P. Devaux,et al.  Shape change and physical properties of giant phospholipid vesicles prepared in the presence of an AC electric field. , 1996, Biophysical journal.

[50]  O. Farago,et al.  Statistical mechanics of bilayer membrane with a fixed projected area. , 2003, The Journal of chemical physics.

[51]  Taniguchi,et al.  Shape deformation and phase separation dynamics of two-component vesicles. , 1996, Physical review letters.

[52]  A. V. Samsonov,et al.  Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes. , 2001, Biophysical journal.

[53]  E. Evans,et al.  Hidden dynamics in rapid changes of bilayer shape , 1994 .

[54]  R. Lipowsky,et al.  Shape transformations of vesicles with intramembrane domains. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[55]  D. Mitov,et al.  Bending elasticities of model membranes: influences of temperature and sterol content. , 1997, Biophysical journal.

[56]  W. Huttner,et al.  Cholesterol is Required for the Formation of Regulated and Constitutive Secretory Vesicles from the trans‐Golgi Network , 2000, Traffic.

[57]  K Kobylarz,et al.  Acute cholesterol depletion inhibits clathrin-coated pit budding. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[58]  G. van Meer,et al.  Lipid microdomains, lipid translocation and the organization of intracellular membrane transport (Review) , 2003, Molecular membrane biology.

[59]  B. Widom Structure and tension of interfaces , 1999 .

[60]  Bending frustration of lipid-water mesophases based on cubic minimal surfaces. , 2001, cond-mat/0102466.

[61]  A. Smondyrev,et al.  Structure of dipalmitoylphosphatidylcholine/cholesterol bilayer at low and high cholesterol concentrations: molecular dynamics simulation. , 1999, Biophysical journal.

[62]  I. V. Polozov,et al.  Liquid domains in vesicles investigated by NMR and fluorescence microscopy. , 2004, Biophysical journal.

[63]  E Gratton,et al.  Lipid rafts reconstituted in model membranes. , 2001, Biophysical journal.

[64]  M. Kozlov,et al.  The gaussian curvature elastic modulus of N-monomethylated dioleoylphosphatidylethanolamine: relevance to membrane fusion and lipid phase behavior. , 2004, Biophysical journal.

[65]  Fission of a multiphase membrane tube. , 2004, Physical review letters.

[66]  Evans,et al.  Entropy-driven tension and bending elasticity in condensed-fluid membranes. , 1990, Physical review letters.

[67]  B. de Kruijff,et al.  Visualizing detergent resistant domains in model membranes with atomic force microscopy , 2001, FEBS letters.

[68]  H. Mcconnell,et al.  Line tension between liquid domains in lipid monolayers , 1992 .

[69]  Udo Seifert,et al.  Configurations of fluid membranes and vesicles , 1997 .

[70]  R. Parton,et al.  Lipid Rafts and Caveolae as Portals for Endocytosis: New Insights and Common Mechanisms , 2003, Traffic.

[71]  Watt W. Webb,et al.  Thermal fluctuations of large quasi-spherical bimolecular phospholipid vesicles , 1984 .