Sensory control of leg movement in the stick insect Carausius morosus

Hind legs with crossed receptor-apodemes of the femoral chordotonal organ when making a step during walking often do not release the ground after reaching the extreme posterior position. After putting a clamp on the trochanter (stimulation of the campaniform sensilla) the leg is no longer protracted during walking. However, during searching-movements the same leg is moved very far forwards. The anatomical situation of the campaniform sensilla on the trochanter and the sensory innervation of the trochanter is described. After removal of the hair-rows and continuously stimulating the hair-plate at the thorax-coxa-joint the extreme anterior and posterior positions of the leg in walking are displaced in the posterior direction. Front and middle legs operated in this way sometimes do not release the ground at the end of retraction. In searching-movements the same leg is moved in a normal way. If only one side of a decerebrated animal goes over a step, then on the other side a compensatory effect is observed. The main source of this compensatory information appears to be the BF1-hair-plates. If the animal has to drag a weight the extreme anterior and posterior positions of the middle and hind legs are displaced in the anterior direction. Crossing the receptor-apodeme of the femoral chordotonal organ, when it causes the leg to remain in the protraction phase, displaces the extreme posterior position of the ipsilateral leg in front of the operated one in the posterior direction. Influences of different sources on the extreme posterior position can superimpose. A model is presented which combines both a central programme and peripheral sensory influence. The word “programme” used here means that it does not only determine the motor output but also determines the reactions to particular afferences. The fact that the reaction to a stimulus depends on the internal state of the CNS is also represented by the model.

[1]  U. Bässler Zum Schweresinn von Mehlkäfern (Tenebrio molitor) und Stechmücken (Aëdes aegypti) , 1961 .

[2]  U. Bässler [On the regulation of the position of the femur-tibial joint of the walking-stick insect Carausius morosus at rest and in motion]. , 1967, Kybernetik.

[3]  P. Usherwood,et al.  Structure and Physiology of a Chordotonal Organ in the Locust Leg , 1968 .

[4]  K. Pearson Central Programming and Reflex Control of Walking in the Cockroach , 1972 .

[5]  K. Pearson,et al.  Nervous Mechanisms Underlying Intersegmental Co-Ordination of Leg Movements During Walking in the Cockroach , 1973 .

[6]  Fachbereich Biologie der Universit Zur Steuerung aktiver Bewegungen des Femur-Tibia-Gelenkes der Stabheuschrecke Carausius morosus , 1973 .

[7]  U Bässler [Control of active movements of the femur-tibia-joint of the stick-insect Carausius morosus (author's transl)]. , 1973, Kybernetik.

[8]  G A Horridge,et al.  The organization of inputs to motoneurons of the locust metathoracic leg. , 1974, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[9]  C. R. Fourtner,et al.  Nonspiking interneurons in walking system of the cockroach. , 1975, Journal of neurophysiology.

[10]  U. Bässler Zur Steuerung aktiver Bewegungen des Femur-Tibia-Gelenkes der Stabheuschrecke Carausius morosus , 1973, Kybernetik.

[11]  U. Bässler,et al.  Reversal of a reflex to a single motoneuron in the stick insect Çarausius morosus , 1976, Biological Cybernetics.

[12]  U. Bässler Zur Regelung der Stellung des Femur-Tibia-Gelenkes bei der Stabheuschrecke Carausius morosus in der Ruhe und im Lauf , 2004, Kybernetik.

[13]  H. Cruse The control of body position in the stick insect (Carausius morosus), when walking over uneven surfaces , 1976, Biological Cybernetics.

[14]  M. Lindauer,et al.  Ein Schweresinnesorgan der Honigbiene , 1959, Zeitschrift für vergleichende Physiologie.

[15]  Ulrich Bässler,et al.  Proprioreceptoren am Subcoxal-und Femur-Tibia-Gelenk der Stabheuschrecke Carausius morosus und ihre Rolle bei der Wahrnehmung der Schwerkraftrichtung , 1965, Kybernetik.

[16]  Zur Steuerung des Springens bei der Wanderheuschrecke Schistocerca gregariea , 2004, Kybernetik.

[17]  G. Wendler Laufen und Stehen der Stabheuschrecke Carausius morosus: Sinnesborstenfelder in den Beingelenken als Glieder von Regelkreisen , 1964, Zeitschrift für vergleichende Physiologie.

[18]  U. Bässler Zur Beeinflussung der Bewegungsweise eines Beines von Carausius morosus durch Amputation anderer Beine , 1972, Kybernetik.

[20]  U. Bässler Vom femoralen Chordotonalorgan gesteuerte Reaktionen bei der Stabheuschrecke Carausius morosus: Messung der von der Tibia erzeugten Kraft im aktiven und inaktiven Tier , 1974, Kybernetik.

[21]  H. Cruse The function of the legs in the free walking stick insect,Carausius morosus , 1976, Journal of comparative physiology.

[22]  D. Graham A behavioural analysis of the temporal organisation of walking movements in the 1st instar and adult stick insect (Carausius morosus) , 1972, Journal of comparative physiology.

[23]  F. Delcomyn Computer aided analysis of a locomotor leg reflex in the cockroach Periplaneta americana , 1971, Zeitschrift für vergleichende Physiologie.

[24]  U. Bässler Zur Bedeutung der Antennen für die Wahrnehmung der Schwerkraftrichtung bei der Stabheuschrecke Carausius morosus , 2004, Kybernetik.