The copula directional dependence by stochastic volatility models

ABSTRACT This paper proposes a copula directional dependence by using a bivariate Gaussian copula beta regression with Stochastic Volatility (SV) models for marginal distributions. With the asymmetric copula generated by the composition of two Plackett copulas, we show that our SV copula directional dependence by the Gaussian copula beta regression model is superior to the Kim and Hwang (2016) copula directional dependence by an asymmetric GARCH model in terms of the percent relative efficiency of bias and mean squared error. To validate our proposed method with the real data, we use Brent Crude Daily Price (BRENT), West Texas Intermediate Daily Price (WTI), the Standard & Poor’s 500 (SP) and US 10-Year Treasury Constant Maturity Rate (TCM) so that our copula SV directional dependence is overall superior to the Kim and Hwang (2016) copula directional dependence by an asymmetric GARCH model in terms of precision by the percent relative efficiency of mean squared error. In terms of forecasting using the real financial data, we also show that the Bayesian SV model of the uniform transformed data by a copula conditional distribution yields an improvement on the volatility models such as GARCH and SV.

[1]  A. McNeil,et al.  The t Copula and Related Copulas , 2005 .

[2]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[3]  P. Hansen,et al.  A Forecast Comparison of Volatility Models: Does Anything Beat a Garch(1,1)? , 2004 .

[4]  Umberto Cherubini,et al.  Dynamic Copula Methods in Finance: Cherubini/Dynamic , 2011 .

[5]  Jong-Min Kim,et al.  Directional dependence via Gaussian copula beta regression model with asymmetric GARCH marginals , 2017, Commun. Stat. Simul. Comput..

[6]  C. Varin,et al.  Gaussian Copula Marginal Regression , 2012 .

[7]  C. Varin,et al.  Beta regression for time series analysis of bounded data, with application to Canada Google Flu Trends. , 2014, 1404.3533.

[8]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[9]  C. Granger Investigating causal relations by econometric models and cross-spectral methods , 1969 .

[10]  H. Manner,et al.  Dynamic stochastic copula models: Estimation, inference and applications , 2012 .

[11]  Jun Yan,et al.  Modeling Multivariate Distributions with Continuous Margins Using the copula R Package , 2010 .

[12]  L. Harris,et al.  A maximum likelihood approach for non-Gaussian stochastic volatility models , 1998 .

[13]  S. Frühwirth-Schnatter,et al.  Stochastic model specification search for Gaussian and partial non-Gaussian state space models , 2010 .

[14]  Eckhard Liebscher,et al.  Construction of asymmetric multivariate copulas , 2008 .

[15]  Claudia Czado,et al.  Efficient Bayesian inference for stochastic time-varying copula models , 2012, Comput. Stat. Data Anal..

[16]  D. Stoffer,et al.  Fitting Stochastic Volatility Models in the Presence of Irregular Sampling via Particle Methods and the EM Algorithm , 2008 .

[17]  S. Y. Hwang,et al.  Asymmetric GARCH processes featuring both threshold effect and bilinear structure , 2012 .

[18]  N. Shephard,et al.  Stochastic Volatility: Likelihood Inference And Comparison With Arch Models , 1996 .

[19]  Gregor Kastner,et al.  Dealing with Stochastic Volatility in Time Series Using the R Package stochvol , 2016, 1906.12134.

[20]  Joseph P. Romano On the behaviour of randomization tests without the group invariance assumption , 1990 .

[21]  C. Granger,et al.  A long memory property of stock market returns and a new model , 1993 .

[22]  Umberto Cherubini,et al.  Dynamic Copula Methods in Finance , 2011 .

[23]  A. Graja Bayesian Analysis of Stochastic Volatility Models , 2009 .

[24]  Mike K. P. So,et al.  Vine-copula GARCH model with dynamic conditional dependence , 2014, Comput. Stat. Data Anal..

[25]  M. Rockinger,et al.  The Copula-GARCH model of conditional dependencies: An international stock market application , 2006 .

[26]  Jun Yu,et al.  Multivariate Stochastic Volatility Models: Bayesian Estimation and Model Comparison , 2006 .

[27]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[28]  N. Shephard Statistical aspects of ARCH and stochastic volatility , 1996 .

[29]  M. Pitt,et al.  Efficient Bayesian inference for Gaussian copula regression models , 2006 .

[30]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[31]  R. Plackett A Class of Bivariate Distributions , 1965 .

[32]  P. Manimaran,et al.  Modelling Financial Time Series , 2006 .

[33]  Gregor Kastner,et al.  Ancillarity-sufficiency interweaving strategy (ASIS) for boosting MCMC estimation of stochastic volatility models , 2014, Comput. Stat. Data Anal..