Spectral Energy Distributions of T Tauri Stars with Passive Circumstellar Disks

We derive hydrostatic, radiative equilibrium models for passive disks surrounding T Tauri stars. Each disk is encased by an optically thin layer of superheated dust grains. This layer reemits directly to space about half the stellar energy it absorbs. The other half is emitted inward and regulates the interior temperature of the disk. The heated disk flares. As a consequence, it absorbs more stellar radiation, especially at large radii, than a flat disk would. The portion of the spectral energy distribution contributed by the disk is fairly flat throughout the thermal infrared. At fixed frequency, the contribution from the surface layer exceeds that from the interior by about a factor 3 and is emitted at more than an order of magnitude greater radius. Spectral features from dust grains in the superheated layer appear in emission if the disk is viewed nearly face-on.

[1]  G. Horneck,et al.  Origins of Life and Evolution of Biosphere , 1998 .

[2]  G. Moriarty-Schieven,et al.  A Submillimeter-Wave “Flare” from GG Tauri? , 1996, astro-ph/9607159.

[3]  L. Mundy,et al.  Imaging the HL Tauri Disk at λ = 2.7 Millimeters with the BIMA Array , 1996 .

[4]  C. O’Dell,et al.  Direct Imaging of Circumstellar Disks in the Orion Nebula , 1996 .

[5]  G. Field,et al.  The physics of the interstellar medium and intergalactic medium : a meeting in honor of Professo George B. Field, EIPC, Marciana Marina, Isola d'Elba, Italy, 20-24 June 1994 , 1995 .

[6]  L. Hartmann,et al.  Flat spectrum T Tauri stars: The case for infall , 1994 .

[7]  John E. Carlstrom,et al.  PROTOSTELLAR ACCRETION DISKS RESOLVED WITH THE JCMT-CSO INTERFEROMETER , 1994 .

[8]  A. Natta The temperature profile of T Tauri disks , 1993 .

[9]  E. Ostriker,et al.  Near-resonant excitation and propagation of eccentric density waves by external forcing. [in accretion disks] , 1992 .

[10]  J. Pollack,et al.  The dynamical evolution of the protosolar nebula , 1991 .

[11]  Fred C. Adams,et al.  Sling amplification and eccentric gravitational instabilities in gaseous disks , 1990 .

[12]  S. Beckwith,et al.  A Survey for Circumstellar Disks around Young Stellar Objects , 1990 .

[13]  Fred C. Adams,et al.  Eccentric gravitational instabilities in nearly Keplerian disks , 1989 .

[14]  Michael F. Skrutskie,et al.  Circumstellar Material Associated with Solar-Type Pre-Main-Sequence Stars: A Possible Constraint on the Timescale for Planet Building , 1989 .

[15]  Scott J. Kenyon,et al.  Spectral energy distributions of T Tauri stars - Disk flaring and limits on accretion , 1987 .

[16]  A. E. Rydgren,et al.  ON THE SPECTRAL FORM OF THE INFRARED EXCESS COMPONENT IN T TAURI SYSTEMS. , 1987 .

[17]  J. Mathis Interstellar dust and extinction , 1987 .

[18]  F. Adams,et al.  Star Formation in Molecular Clouds: Observation and Theory , 1987 .

[19]  C. Lada,et al.  Spectral evolution of young stellar objects , 1986 .

[20]  S. Rucinski IRAS observations of T Tauri and post-T Tauri stars , 1985 .

[21]  F. Witteborn,et al.  Spectrophotometry at 10 microns of T Tauri stars , 1985 .

[22]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[23]  A. E. Rydgren Broad band spectral energy distributions of T Tauri stars in the Taurus- Auriga region , 1984 .

[24]  S. Weidenschilling The distribution of mass in the planetary system and solar nebula , 1977 .

[25]  D. Lynden-Bell,et al.  The Evolution of viscous discs and the origin of the nebular variables. , 1974 .

[26]  C. Hayashi,et al.  Growth of Solid Particles in the Primordial Solar Nebula , 1970 .

[27]  E. E. Mendoza,et al.  INFRARED EXCESSES IN T TAURI STARS AND RELATED OBJECTS. , 1968 .