Remote sensing: Using the spatial domain

Objects in the terrestrial environment interact differentially with electromagnetic radiation according to their essential physical, chemical and biological properties. This differential interaction is manifest as variability in scattered radiation according to wavelength, location, time, geometries of illumination and observation and polarization. If the population of scattered radiation could be measured, then estimation of these essential properties would be straightforward. The only problem would be linking such estimates to environmental variables of interest. This review paper is divided into three parts. Part 1 is an overview of the attempts that have been made to sample the five domains of scattered radiation (spectral, spatial, temporal, geometrical, polarization) and then to use the results of this sampling to estimate environmental variables of interest. Part one highlights three issues: first, that relationships between remotely sensed data and environmental variables of interest are indirect; second, our ability to estimate these environmental variables is dependent upon our ability to capture a sound representation of variability in scattered radiation and third, a considerable portion of the useful information in remotely sensed images resides in the spatial domain (within the relations between the pixels in the image). This final point is developed in Part 2 that explores ways in which the spatial domain is utilized to describe spatial variation in remotely sensed and ground data; to design optimum sampling schemes for image data and ground data and to increase the accuracy with which remotely sensed data can be used to estimate both discontinuous and continuous variables. Part 3 outlines two specific uses of information in the spatial domain; first, to select an optimum spatial resolution and second, to inform an image classification.

[1]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[2]  G. Matheron Les variables régionalisées et leur estimation : une application de la théorie de fonctions aléatoires aux sciences de la nature , 1965 .

[3]  Michel M. Verstraete,et al.  Potential and limitations of information extraction on the terrestrial biosphere from satellite remote sensing , 1996 .

[4]  Giles M. Foody,et al.  Remote Sensing of Soils and Vegetation in the USSR , 1990 .

[5]  Arthur H. Robinson,et al.  THE NECESSITY OF WEIGHTING VALUES IN CORRELATION ANALYSIS OF AREAL DATA , 1956 .

[6]  Philip J. Howarth,et al.  High Spatial Resolution Remote Sensing Data for Forest Ecosystem Classification: An Examination of Spatial Scale , 2000 .

[7]  P. Atkinson,et al.  Cokriging with airborne MSS imagery , 1994 .

[8]  Mario Chica-Olmo,et al.  Evaluation of Geostatistical Measures of Radiometric Spatial Variability for Lithologic Discrimination in Landsat TM Images , 1999 .

[9]  Fernando Pellon de Miranda,et al.  Analysis of JERS-1 (Fuyo-1) SAR data for vegetation discrimination in northwestern Brazil using the semivariogram textural classifier (STC) , 1996 .

[10]  Mark Cutler,et al.  Estimating Canopy Chlorophyll Concentration from Field and Airborne Spectra , 1999 .

[11]  James R. Carr,et al.  Spectral and textural classification of single and multiple band digital images , 1996 .

[12]  Donald E. Myers,et al.  Variance as a function of sample support size , 1990 .

[13]  L. Curry,et al.  A NOTE ON SPATIAL ASSOCIATION , 1966 .

[14]  F. D. van der Meer,et al.  Classification of remotely-sensed imagery using an indicator kriging approach: application to the problem of calcite-dolomite mineral mapping , 1996 .

[15]  N. Cressie The origins of kriging , 1990 .

[16]  R. Webster,et al.  Optimal interpolation and isarithmic mapping of soil properties: I The semi‐variogram and punctual kriging , 1980, European Journal of Soil Science.

[17]  Richard Webster,et al.  Quantitative spatial analysis of soil in the field , 1985 .

[18]  Francis Gohin,et al.  Wind Fields at the Sea Surface Determined from Combined Ship and Satellite Altimeter Data , 1993 .

[19]  Nicholas C. Coops,et al.  Utilizing local variance of simulated high spatial resolution imagery to predict spatial pattern of forest stands , 2000 .

[20]  C. E. Gehlke,et al.  Certain Effects of Grouping upon the Size of the Correlation Coefficient in Census Tract Material , 1934 .

[21]  C. Woodcock,et al.  Autocorrelation and regularization in digital images. II. Simple image models , 1989 .

[22]  C. Woodcock,et al.  The use of variograms in remote sensing. I - Scene models and simulated images. II - Real digital images , 1988 .

[23]  W. Cohen,et al.  Semivariograms of digital imagery for analysis of conifer canopy structure. , 1990 .

[24]  Jerry A. Neprash,et al.  Some Problems in the Correlation of Spatially Distributed Variables , 1934 .

[25]  R. Welch,et al.  Spatial resolution requirements for urban studies , 1982 .

[26]  Cynthia S. A. Wallace,et al.  Characterizing the spatial structure of vegetation communities in the Mojave Desert using geostatistical techniques , 2000 .

[27]  J. Chen Spatial Scaling of a Remotely Sensed Surface Parameter by Contexture , 1999 .

[28]  C. Woodcock,et al.  The use of variograms in remote sensing: I , 1988 .

[29]  P. R. van Gardingen,et al.  Scaling-up : from cell to landscape , 1997 .

[30]  G. Ramstein,et al.  Analysis of the structure of radiometric remotely-sensed images , 1989 .

[31]  P. Atkinson,et al.  Spatial Scale Problems and Geostatistical Solutions: A Review , 2000 .

[32]  C. E. Woodcock,et al.  Geostatistical Estimation of Resolution- Dependent Variance in Remotely Sensed Images , 1999 .

[33]  N. Gobron,et al.  The MERIS Global Vegetation Index (MGVI): Description and preliminary application , 1999 .

[34]  Peter M. Atkinson,et al.  Fine Spatial Resolution Simulated Satellite Sensor Imagery for Land Cover Mapping in the United Kingdom , 1999 .

[35]  H. F. Smith An empirical law describing heterogeneity in the yields of agricultural crops , 1938, The Journal of Agricultural Science.

[36]  P. Burrough,et al.  A fractal approach to the classification of Mediterranean vegetation types in remotely sensed images , 1995 .

[37]  Siamak Khorram,et al.  Land-cover change detection enhanced with generalized linear models , 1999 .

[38]  Jean-Louis Roujean,et al.  Analysis of the POLDER (POLarization and directionality of earth's reflectances) airborne instrument observations over land surfaces , 1993 .

[39]  P. Atkinson,et al.  Fine spatial resolution satellite sensors for the next decade , 1997 .

[40]  Mario Chica-Olmo,et al.  Computing geostatistical image texture for remotely sensed data classification , 2000 .

[41]  Peter M. Atkinson,et al.  The integration of spectral and textural information using neural networks for land cover mapping in the Mediterranean , 2000 .

[42]  P M Atkinson,et al.  Linking remote sensing, land cover and disease. , 2000, Advances in parasitology.

[43]  Peter M. Atkinson,et al.  Defining an optimal size of support for remote sensing investigations , 1995, IEEE Trans. Geosci. Remote. Sens..

[44]  Philip Lewis,et al.  Geostatistical classification for remote sensing: an introduction , 2000 .

[45]  N. Goel Models of vegetation canopy reflectance and their use in estimation of biophysical parameters from reflectance data , 1988 .

[46]  P. Goovaerts Geostatistics in soil science: state-of-the-art and perspectives , 1999 .

[47]  R. A. Vaughan,et al.  Spatial variation in SAR images of different resolution for agricultural fields , 1999 .

[48]  C. Woodcock,et al.  Autocorrelation and regularization in digital images. I. Basic theory , 1988 .

[49]  Geneviève Sèze,et al.  Effects of satellite data resolution on measuring the space/time variations of surfaces and clouds , 1991 .

[50]  A. Stewart Fotheringham,et al.  Trends in quantitative methods II: stressing the computational , 1998 .

[51]  D. Mulla,et al.  Estimation of soil properties and wheat yields on complex eroded hills using geostatistics and thematic mapper images , 1991 .

[52]  J. Carr,et al.  Semivariogram textural classification of JERS-1 (Fuyo-1) SAR data obtained over a flooded area of the Amazon rainforest , 1998 .

[53]  K. O. Niemann,et al.  Local Maximum Filtering for the Extraction of Tree Locations and Basal Area from High Spatial Resolution Imagery , 2000 .

[54]  Benjamin Lees,et al.  Applying signal detection theory to spatial data , 2000 .

[55]  Jean-Philippe Gastellu-Etchegorry,et al.  Sensitivity of Texture of High Resolution Images of Forest to Biophysical and Acquisition Parameters , 1998 .

[56]  R. Webster,et al.  How geostatistics can help you , 1991 .

[57]  C. Justice,et al.  Selecting the spatial resolution of satellite sensors required for global monitoring of land transformations , 1988 .

[58]  David J. Martin,et al.  Optimizing Census Geography: The Separation of Collection and Output Geographies , 1998, Int. J. Geogr. Inf. Sci..

[59]  James R. Carr,et al.  Application of the semivariogram textural classifier (STC) for vegetation discrimination using SIR-B data of Borneo , 1992 .

[60]  C. Woodcock,et al.  The factor of scale in remote sensing , 1987 .

[61]  M. Charlton,et al.  Quantitative geography : perspectives on spatial data analysis by , 2001 .

[62]  Paul J. Curran,et al.  Per-field classification: an example using SPOT HRV imagery , 1991 .

[63]  R. Webster,et al.  Optimal interpolation and isarithmic mapping of soil properties. II. Block kriging. , 1980 .

[64]  S. de Bruin,et al.  Integrating spatial statistics and remote sensing , 1998 .

[65]  Peter M. Atkinson,et al.  Geostatistics and remote sensing , 1998 .

[66]  J. Carr,et al.  Application of the semivariogram textural classifier (STC) for vegetation discrimination using SIR‐B data of the guiana shield, northwestern brazil , 1994 .

[67]  Peter M. Atkinson,et al.  Investigating the effect of support size on population surface models , 1999 .

[68]  M. Kendall,et al.  An Introduction to the Theory of Statistics. , 1911 .

[69]  J. Townshend The spatial resolving power of earth resources satellites , 1980 .

[70]  Peter M. Atkinson,et al.  Choosing an appropriate spatial resolution for remote sensing investigations , 1997 .

[71]  Edwin N. Thomas,et al.  ADDITIONAL COMMENTS ON WEIGHTING VALUES IN CORRELATION ANALYSIS OF AREAL DATA , 1965 .

[72]  Eric F. Lambin,et al.  Modelling and monitoring land-cover change processes in tropical regions , 1997 .

[73]  F. D. van der Meer,et al.  Geostatistical approaches for image classification and assessment of uncertainty in geologic processing , 1999 .

[74]  Peter M. Atkinson,et al.  Issues of scale and optimal pixel size , 1999 .

[75]  Giles M. Foody,et al.  Estimation of the Areal Extent of Land Cover Classes that Only Occur at a Sub-Pixel Level , 1996 .

[76]  Fernando Pellon de Miranda,et al.  The semivariogram in comparison to the co-occurrence matrix for classification of image texture , 1998, IEEE Trans. Geosci. Remote. Sens..

[77]  Paul E. Johnson,et al.  Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 Site , 1986 .

[78]  Giles M. Foody,et al.  Assessing the ground data requirements for regional scale remote sensing of tropical forest biophysical properties , 2000 .

[79]  S. Gerstl,et al.  Physics concepts of optical and radar reflectance signatures A summary review , 1990 .

[80]  Chris D. Clark,et al.  Remote Sensing Scales Related To The Frequency Of Natural Variation: An Example From Paleo-ice Flow In Canada , 1990 .

[81]  Ute Christina Herzfeld,et al.  Automated geostatistical seafloor classification—principles, parameters, feature vectors, and discrimination criteria , 1996 .

[82]  P. Fisher The pixel: A snare and a delusion , 1997 .