Polymorphism in silica studied in the local density and generalized-gradient approximations

The crystal structures of a large number of silica polytypes (- and -quartz, - and -cristobalite, -tridymite, keatite, coesite and stishovite) have been studied using density functional theory, both in the local density approximation and including generalized-gradient corrections to the exchange-correlation functional. All crystal structures have been optimized by minimizing the total energy with respect to all lattice parameters and to the atomic coordinates within the unit cell (up to 40 structural parameters in the case of coesite). The transitions in quartz and cristobalite have been studied in detail, including different variants proposed for the structure of -cristobalite. The tetragonal (I2d) and simple cubic (P213) structures are found to be energetically almost degenerate near the equilibrium volume. On volume expansion both structures converge towards the idealized highly symmetric Fd3m structure. A similar continuous transition from a more compact orthorhombic (C2221) to a highly symmetric hexagonal (P63/mmc) variant is also proposed for -tridymite. For coesite two monoclinic variants (with C2/c and P21/c space-group symmetries, respectively) have been examined and found to be energetically degenerate to within 1 meV per SiO2 unit. It is shown that within the local density approximation (LDA) the equilibrium atomic volume of all polytypes is predicted with an accuracy better than one per cent. The LDA also leads to excellent structural predictions and to accurate values of the bulk modulus. Corrections in the framework of the generalized-gradient approximation (GGA) lead to substantially larger equilibrium volumes, although at fixed volume the LDA and GGA lead to identical crystal structures. The increased volume also leads to less accurate structural parameters. However, we find that gradient corrections are essential for achieving accurate structural energy differences between the tetrahedrally coordinated phases found at larger atomic volumes (all polytypes except stishovite) and the octahedrally coordinated high-pressure polymorphs (stishovite and post-stishovite phases).

[1]  P. D'arco,et al.  Pseudopotential Periodic Hartree‐Fock Study of the Cristobalite Phases of Silica and Germanium Dioxide , 1992 .

[2]  C. Prewitt,et al.  High-pressure crystal structure and compressibility of coesite , 1981 .

[3]  K. Kato,et al.  Die Kristallstruktur des monoklinen Tief-Tridymits , 1976 .

[4]  Georg Kresse,et al.  Ultrasoft pseudopotentials applied to magnetic Fe, Co, and Ni: From atoms to solids , 1997 .

[5]  D. Weidner,et al.  Structure and elastic properties of quartz at pressure , 1980 .

[6]  Allan,et al.  Structure and stability of several high-pressure crystalline polymorphs of silica. , 1995, Physical review. B, Condensed matter.

[7]  L. Dubrovinsky,et al.  A new high-pressure silica phase obtained by molecular dynamics , 1996 .

[8]  Georg Kresse,et al.  Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements , 1994 .

[9]  R. Cohen Bonding and elasticity of stishovite SiO2 at high pressure: Linearized augmented plane wave calculations , 1991 .

[10]  J. Perdew,et al.  Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. , 1986, Physical review. B, Condensed matter.

[11]  W. H. Baur Silicon–oxygen bond lengths, bridging angles Si–O–Si and synthetic low tridymite , 1977 .

[12]  Blöchl,et al.  Improved tetrahedron method for Brillouin-zone integrations. , 1994, Physical review. B, Condensed matter.

[13]  R. Wyckoff Crystal structure of high temperature cristobalite , 1925 .

[14]  Georg Kresse,et al.  High Pressure Polymorphism in Silica , 1998 .

[15]  R. Bidigare,et al.  Seasonal variability of bio-optical and physical properties in the Sargasso sea , 1993 .

[16]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[17]  Axel D. Becke,et al.  Density-functional thermochemistry. I. The effect of the exchange-only gradient correction , 1992 .

[18]  J. Crain,et al.  Ab initio studies of high-pressure structural transformations in silica , 1997 .

[19]  H. Mao,et al.  Transformation of stishovite to a denser phase at lower-mantle pressures , 1995, Nature.

[20]  D. Vanderbilt,et al.  First-principles studies on structural properties of β-cristobalite , 1993 .

[21]  D. Langreth,et al.  Beyond the local-density approximation in calculations of ground-state electronic properties , 1983 .

[22]  Monte B. Boisen,et al.  Framework silica structures generated using simulated annealing with a potential energy function based on an H6Si2O7 molecule , 1994 .

[23]  O. J. Kleppa,et al.  Thermodynamics of polymorphic transformations in silica. Thermal properties from 5 to 1070° K and pressure-temperature stability fields for coesite and stishovite , 1967 .

[24]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[25]  Donald Β. Peacor High-temperature single-crystal study of the cristobalite inversion , 1973 .

[26]  K. Kihara Thermal change in unit-cell dimensions, and a hexagonal structure of tridymite , 1978 .

[27]  A. Navrotsky,et al.  The quartz-coesite-stishovite transformations: new calorimetric measurements and calculation of phase diagrams , 1984 .

[28]  R. Hemley,et al.  High-pressure crystal chemistry and amorphization of α-quartz , 1989 .

[29]  V. Heine,et al.  The Determination of Rigid-Unit Modes as Potential Soft Modes for Displacive Phase Transitions in Framework Crystal Structures , 1993 .

[30]  Sosman Phases of silica , 1965 .

[31]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[32]  G. Artioli,et al.  Crystal structure of coesite, a high-pressure form of SiO/sub 2/, at 15 and 298 K from single-crystal neutron and x-ray diffraction data: test of bonding models , 1987 .

[33]  János G. Ángyán,et al.  Brønsted Acid Sites in HSAPO-34 and Chabazite: An Ab Initio Structural Study , 1998 .

[34]  W. Dollase,et al.  The superstructure of meteoritic low tridymite solved by computer simulation , 1976 .

[35]  Bernard Silvi,et al.  Periodic pseudopotential Hartree–Fock study of α‐quartz structure SiO2 and GeO2 , 1990 .

[36]  A. Macdonald Comment on special points for Brillouin-zone integrations , 1978 .

[37]  G. Dolino,et al.  The α-inc-β transitions of quartz: A century of research on displacive phase transitions , 1990 .

[38]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[39]  M. Vallade,et al.  Origin of the incommensurate phase of quartz : II. Interpretation of inelastic neutron scattering data , 1992 .

[40]  Tse,et al.  Novel high pressure phase of silica. , 1992, Physical review letters.

[41]  V. Dmitriev,et al.  Theory of SiO2 polymorphs , 1997 .

[42]  Hafner,et al.  Theory of the crystal structures of selenium and tellurium: The effect of generalized-gradient corrections to the local-density approximation. , 1994, Physical review. B, Condensed matter.

[43]  J. Shu,et al.  High-pressure crystal chemistry of stishovite , 1990 .

[44]  Allan,et al.  Nonlocal pseudopotentials in molecular-dynamical density-functional theory: Application to SiO2. , 1987, Physical review letters.

[45]  D. Appleman,et al.  The crystal structure of low tridymite , 1978 .

[46]  Taro Takahashi,et al.  Effect of pressure on the lattice parameters of stishovite , 1974 .

[47]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[48]  W. A. DOLLASE,et al.  Reinvestigation of the structure of low cristobalite , 1965 .

[49]  R. Downs,et al.  The pressure behavior of alpha cristobalite , 1994 .

[50]  C. Catlow,et al.  An ab-initio Hartree-Fock study of α-quartz and stishovite , 1990 .

[51]  Tezuka,et al.  Observation of the silent soft phonon in beta -quartz by means of hyper-Raman scattering. , 1991, Physical review letters.

[52]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[53]  J. Faber,et al.  Crystal structure of low cristobalite at 10, 293, and 473 K: Variation of framework geometry with temperature , 1985 .

[54]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[55]  Hamann Application of adaptive curvilinear coordinates to the electronic structure of solids. , 1995, Physical review. B, Condensed matter.

[56]  A. Bruce,et al.  Structural phase transitions , 1981 .

[57]  A. Wright,et al.  The structures of the β-cristobalite phases of SiO2 and AlPO4 , 1975 .

[58]  G. Kresse,et al.  The influence of generalized gradient corrections to the LDA on predictions of structural phase stability: the Peierls distortion in As and Sb , 1995 .

[59]  Gibbs,et al.  First-principles study of several hypothetical silica framework structures. , 1995, Physical review. B, Condensed matter.

[60]  Liu,et al.  First-principles study of crystalline silica. , 1994, Physical review. B, Condensed matter.

[61]  P. Pulay Convergence acceleration of iterative sequences. the case of scf iteration , 1980 .

[62]  Masashi Sugiyama,et al.  The crystal structure of stishovite under pressure up to 6 GPa , 1987 .

[63]  Anatoly B. Belonoshko,et al.  Molecular dynamics of NaCl (B1 and B2) and MgO (B1) melting: Two-phase simulation , 1996 .

[64]  Georg Kresse,et al.  First-principles calculations to describe zirconia pseudopolymorphs , 1999 .

[65]  Hafner,et al.  Ab initio calculation of the structural and electronic properties of carbon and boron nitride using ultrasoft pseudopotentials. , 1994, Physical review. B, Condensed matter.

[66]  Martin T. Dove,et al.  Low-frequency floppy modes in β-cristobalite. , 1993 .

[67]  M. Spackman,et al.  Exploration of structure, electron density distribution, and bonding in coesite with Fourier and pseudoatom refinement methods using single-crystal x-ray diffraction data , 1987 .

[68]  R. Angel,et al.  The Use of Quartz as an Internal Pressure Standard in High-Pressure Crystallography , 1997 .

[69]  W. Dollase The crystal structure at 220°C of orthorhombic high tridymite from the Steinbach meteorite , 1967 .

[70]  K. Kihara On the split-atom model for hexagonal tridymite , 1980 .

[71]  B. Hyde,et al.  Cristobalites and topologically-related structures , 1976 .

[72]  C. R. A. Catlow,et al.  Computer modelling of solid-state inorganic materials , 1990, Nature.

[73]  Wolf,et al.  Ab initio calculations of the cohesive, elastic, and dynamical properties of CoSi2 by pseudopotential and all-electron techniques. , 1996, Physical review. B, Condensed matter.

[74]  Chelikowsky,et al.  Simulating the amorphization of alpha -quartz under pressure. , 1994, Physical review. B, Condensed matter.

[75]  Stephen J. Finch,et al.  Elastic properties from acoustic and volume compression experiments , 1981 .

[76]  Chelikowsky,et al.  Structural properties of nine silica polymorphs. , 1992, Physical review. B, Condensed matter.

[77]  K. Terakura,et al.  Theoretical evidence for a new ultra-high-pressure phase of SiO2 , 1988, Nature.

[78]  D. Wallace,et al.  Thermodynamics of Crystals , 1972 .

[79]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[80]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[81]  M. Lehmann,et al.  The structure of quartz at 25 and 590°C determined by neutron diffraction , 1981 .

[82]  R. Dovesi,et al.  Periodic Hartree-Fock study of minerals: Tetracoordinated silica polymorphs , 1991 .

[83]  W. Bragg,et al.  The crystal structures of minerals , 1965 .

[84]  A. Zunger,et al.  A new method for diagonalising large matrices , 1985 .

[85]  O. Jepson,et al.  The electronic structure of h.c.p. Ytterbium , 1993 .

[86]  B. Dorner,et al.  On the mechanism of the α-β phase transformation of quartz , 1974 .

[87]  Thomas Frederik Weybye Barth,et al.  The cristobalite structures , 1932 .

[88]  Hamann Generalized gradient theory for silica phase transitions. , 1996, Physical review letters.

[89]  P. D'arco,et al.  Pseudopotential periodic Hartree-Fock study of the cristobalite to stishovite phase transition , 1992 .

[90]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[91]  K. Kihara Addenda and corrigendum for "On the split-atom model for hexagonal tridymite" , 1981 .

[92]  M. Boisen,et al.  A modeling of the structure and compressibility of quartz with a molecular potential and its transferability to cristobalite and coesite , 1993 .

[93]  Hafner,et al.  Ab initio molecular dynamics for open-shell transition metals. , 1993, Physical review. B, Condensed matter.

[94]  R. A. Howm Silica: Physical Behavior, Geochemistry and Materials Applications , 1996 .

[95]  D. L. Anderson Equations of State of Solids for Geophysics and Ceramic Science [Book Review] , 1996 .

[96]  T. Hahn,et al.  Crystal structures of the low-temperature quartz-type phases of SiO2 and GeO2 at elevated pressure , 1992 .

[97]  Lin,et al.  Real-space implementation of nonlocal pseudopotentials for first-principles total-energy calculations. , 1991, Physical review. B, Condensed matter.

[98]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[99]  Roberto Dovesi,et al.  The electronic structure of α-quartz: A periodic Hartree-Fock calculation , 1987 .