An alternative construction of Conway's ordered field No

AbstractAn ℵα-universally extending ordered field of power ℵα is constructed for each regular power ℵα where 0 <α ≤ On and $$\sum\nolimits_{\beta< \alpha } {2^{\aleph _\beta } \leqslant \aleph _\alpha }$$ . When ℵα is inaccessible, the structure is either a (set) model of J. H. Conway's ordered field No or an isomorphic copy of No depending on whether or not ℵα is a set or a proper class.

[1]  N. L. Alling,et al.  CONWAY'S FIELD OF SURREAL NUMBERS , 1985 .

[2]  R.K. Guy,et al.  On numbers and games , 1978, Proceedings of the IEEE.

[3]  B. H. Neumann,et al.  On ordered division rings , 1949 .

[4]  Hans Hermes,et al.  Introduction to mathematical logic , 1973, Universitext.

[5]  J. Nagata,et al.  On rings of continuous functions , 1977 .

[6]  M. Nagata Some remarks on ordered fields , 1975 .

[7]  Wanda Szmielew Some Metamathematical Problems Concerning Elementary Hyperbolic Geometry , 1959 .

[8]  N. L. Alling,et al.  On the existence of real-closed fields that are _{}-sets of power ℵ_{} , 1962 .

[9]  J. Conway On Numbers and Games , 1976 .

[10]  ηα-Strukturen , 1978 .

[11]  Leonard Gillman,et al.  Rings of continuous functions , 1961 .

[12]  Saunders MacLane,et al.  The universality of formal power series fields , 1939 .

[13]  B. Jónsson Universal relational systems , 1956 .

[14]  Elliott Mendelson,et al.  Introduction to Mathematical Logic , 1979 .

[15]  J. M. BocheŃski,et al.  The Axiomatic Method , 1965 .

[16]  Leonard Gillman,et al.  Rings of continuous functions , 1961 .

[17]  Bjarni Jónsson,et al.  Homogeneous Universal Relational Systems. , 1960 .

[18]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[19]  R. Vaught,et al.  Homogeneous Universal Models , 1962 .

[20]  N. L. Alling On ordered divisible groups , 1960 .

[21]  A. Tarski What is Elementary Geometry , 1959 .

[22]  E. Harzheim Beiträge zur Theorie der Ordnungstypen, insbesondere der ηα-Mengen , 1964 .

[23]  Wilhelm Ackermann,et al.  Zur Axiomatik der Mengenlehre , 1956 .

[24]  H. L. Royden Remarks on Primitive Notions for Elementary Euclidean and Non-Euclidean Plane Geometry , 1959 .

[25]  P. Erdös,et al.  An Isomorphism Theorem for Real-Closed Fields , 1955 .