An alternative construction of Conway's ordered field No
暂无分享,去创建一个
[1] N. L. Alling,et al. CONWAY'S FIELD OF SURREAL NUMBERS , 1985 .
[2] R.K. Guy,et al. On numbers and games , 1978, Proceedings of the IEEE.
[3] B. H. Neumann,et al. On ordered division rings , 1949 .
[4] Hans Hermes,et al. Introduction to mathematical logic , 1973, Universitext.
[5] J. Nagata,et al. On rings of continuous functions , 1977 .
[6] M. Nagata. Some remarks on ordered fields , 1975 .
[7] Wanda Szmielew. Some Metamathematical Problems Concerning Elementary Hyperbolic Geometry , 1959 .
[8] N. L. Alling,et al. On the existence of real-closed fields that are _{}-sets of power ℵ_{} , 1962 .
[9] J. Conway. On Numbers and Games , 1976 .
[10] ηα-Strukturen , 1978 .
[11] Leonard Gillman,et al. Rings of continuous functions , 1961 .
[12] Saunders MacLane,et al. The universality of formal power series fields , 1939 .
[13] B. Jónsson. Universal relational systems , 1956 .
[14] Elliott Mendelson,et al. Introduction to Mathematical Logic , 1979 .
[15] J. M. BocheŃski,et al. The Axiomatic Method , 1965 .
[16] Leonard Gillman,et al. Rings of continuous functions , 1961 .
[17] Bjarni Jónsson,et al. Homogeneous Universal Relational Systems. , 1960 .
[18] Chen C. Chang,et al. Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .
[19] R. Vaught,et al. Homogeneous Universal Models , 1962 .
[20] N. L. Alling. On ordered divisible groups , 1960 .
[21] A. Tarski. What is Elementary Geometry , 1959 .
[22] E. Harzheim. Beiträge zur Theorie der Ordnungstypen, insbesondere der ηα-Mengen , 1964 .
[23] Wilhelm Ackermann,et al. Zur Axiomatik der Mengenlehre , 1956 .
[24] H. L. Royden. Remarks on Primitive Notions for Elementary Euclidean and Non-Euclidean Plane Geometry , 1959 .
[25] P. Erdös,et al. An Isomorphism Theorem for Real-Closed Fields , 1955 .