New Fast and Accurate Jacobi SVD Algorithm. I
暂无分享,去创建一个
[1] Alan George,et al. Some Properties of Symmetric Quasi-Definite Matrices , 2000, SIAM J. Matrix Anal. Appl..
[2] Josip Matejas,et al. Quadratic convergence of scaled matrices in Jacobi method , 2000, Numerische Mathematik.
[3] G. Golub,et al. Linear least squares solutions by householder transformations , 1965 .
[4] Ed Anderson,et al. LAPACK Users' Guide , 1995 .
[5] Stanley C. Eisenstat,et al. A Divide-and-Conquer Algorithm for the Bidiagonal SVD , 1995, SIAM J. Matrix Anal. Appl..
[6] James Demmel,et al. Accurate Singular Values of Bidiagonal Matrices , 1990, SIAM J. Sci. Comput..
[7] Beresford N. Parlett,et al. Implicit Cholesky algorithms for singular values and vectors of triangular matrices , 1993, Numer. Linear Algebra Appl..
[8] C. Jacobi,et al. C. G. J. Jacobi's Gesammelte Werke: Über ein leichtes Verfahren, die in der Theorie der Sacularstorungen vorkommenden Gleichungen numerisch aufzulosen , 1846 .
[9] Zvonimir Bujanovic,et al. On the Failure of Rank-Revealing QR Factorization Software -- A Case Study , 2008, TOMS.
[10] James Demmel,et al. Cache efficient bidiagonalization using BLAS 2.5 operators , 2008, TOMS.
[11] A. Ostrowski. A QUANTITATIVE FORMULATION OF SYLVESTER'S LAW OF INERTIA. , 1959, Proceedings of the National Academy of Sciences of the United States of America.
[12] James Demmel,et al. Faster numerical algorithms via exception handling , 1993, Proceedings of IEEE 11th Symposium on Computer Arithmetic.
[13] G. Stewart. The Efficient Generation of Random Orthogonal Matrices with an Application to Condition Estimators , 1980 .
[14] Ming Gu,et al. Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization , 1996, SIAM J. Sci. Comput..
[15] Charles L. Lawson,et al. Solving least squares problems , 1976, Classics in applied mathematics.
[16] W. Kahan. Numerical Linear Algebra , 1966, Canadian Mathematical Bulletin.
[17] Z. Drmač,et al. On Scaled Almost-Diagonal Hermitian Matrix Pairs , 1997 .
[18] V. Hari,et al. On Jacobi methods for singular value decompositions , 1987 .
[19] Zlatko Drmac,et al. New Fast and Accurate Jacobi SVD Algorithm. II , 2007, SIAM J. Matrix Anal. Appl..
[20] Zlatko Drmac,et al. Implementation of Jacobi Rotations for Accurate Singular Value Computation in Floating Point Arithmetic , 1997, SIAM J. Sci. Comput..
[21] M. Hestenes. Inversion of Matrices by Biorthogonalization and Related Results , 1958 .
[22] Herman H. Goldstine,et al. The Jacobi Method for Real Symmetric Matrices , 1959, JACM.
[23] Vjeran Hari,et al. Convergence of a Block-Oriented Quasi-Cyclic Jacobi Method , 2007, SIAM J. Matrix Anal. Appl..
[24] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[25] J. G. Lewis,et al. Sparse Multifrontal Rank Revealing QR Factorization , 1997 .
[26] J. Barlow,et al. Computing accurate eigensystems of scaled diagonally dominant matrices: LAPACK working note No. 7 , 1988 .
[27] G. Forsythe,et al. The cyclic Jacobi method for computing the principal values of a complex matrix , 1960 .
[28] Philip I. Davies,et al. Numerically Stable Generation of Correlation Matrices and Their Factors , 2000 .
[29] William Kahan,et al. The baleful effect of computer benchmarks upon applied mathematics , 1997 .
[30] J. Demmel,et al. Computing the Singular Value Decomposition with High Relative Accuracy , 1997 .
[31] V. Hari. On sharp quadratic convergence bounds for the serial Jacobi methods , 1991 .
[32] N. Rhee,et al. On the global and cubic convergence of a quasi-cyclic Jacobi method , 1993 .
[33] Ren-Cang Li,et al. Relative Perturbation Theory: II. Eigenspace and Singular Subspace Variations , 1996, SIAM J. Matrix Anal. Appl..
[34] C. Jacobi. Ueber eine neue Auflösungsart der bei der Methode der kleinsten Quadrate vorkommenden lineären Gleichungen , 1845 .
[35] V. Hari,et al. Accelerating the SVD Block-Jacobi Method , 2005, Computing.
[36] P. Tang,et al. Bounds on singular values revealed by QR factorizations , 1995 .
[37] Nicholas J. Higham,et al. QR factorization with complete pivoting and accurate computation of the SVD , 2000 .
[38] A. Sluis. Condition numbers and equilibration of matrices , 1969 .
[39] Zlatko Drmac,et al. On Principal Angles between Subspaces of Euclidean Space , 2000, SIAM J. Matrix Anal. Appl..
[40] Tony F. Chan,et al. An Improved Algorithm for Computing the Singular Value Decomposition , 1982, TOMS.
[41] B. Lang,et al. An O(n2) algorithm for the bidiagonal SVD , 2003 .
[42] Jesse L. Barlow,et al. More Accurate Bidiagonal Reduction for Computing the Singular Value Decomposition , 2001, SIAM J. Matrix Anal. Appl..
[43] John K. Reid,et al. On applying Householder transformations to linear least squares problems , 1968, IFIP Congress.
[44] B. Parlett,et al. Accurate singular values and differential qd algorithms , 1994 .
[45] B. Rust. Truncating the Singular Value Decomposition for Ill-Posed Problems , 1998 .
[46] T. Chan. Rank Revealing OR Factorizations * , 2001 .
[47] Ji-guang Sun. Componentwise perturbation bounds for some matrix decompositions , 1992 .
[48] G. W. Stewart,et al. The QLP Approximation to the Singular Value Decomposition , 1999, SIAM J. Sci. Comput..
[49] N. N. Chan,et al. Diagonal elements and eigenvalues of a real symmetric matrix , 1983 .
[50] J. H. Wilkinson. Note on the quadratic convergence of the cyclic Jacobi process , 1962 .
[51] Ilse C. F. Ipsen,et al. On Rank-Revealing Factorisations , 1994, SIAM J. Matrix Anal. Appl..
[52] G. Stewart. Perturbation theory for the singular value decomposition , 1990 .
[53] Jack J. Dongarra,et al. A set of level 3 basic linear algebra subprograms , 1990, TOMS.
[54] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[55] Christian H. Bischof,et al. Algorithm 782: codes for rank-revealing QR factorizations of dense matrices , 1998, TOMS.
[56] James Demmel,et al. Jacobi's Method is More Accurate than QR , 1989, SIAM J. Matrix Anal. Appl..
[57] F. L. Bauer. Software and Software Engineering , 1973 .
[58] Ilse C. F. Ipsen. Relative perturbation results for matrix eigenvalues and singular values , 1998, Acta Numerica.
[59] P. Tang,et al. Bounds on Singular Values Revealed by QR Factorizations , 1999 .
[60] Inderjit S. Dhillon,et al. Orthogonal Eigenvectors and Relative Gaps , 2003, SIAM J. Matrix Anal. Appl..
[61] G. Golub,et al. Eigenvalue computation in the 20th century , 2000 .
[62] Z. Drmač. A posteriori computation of the singular vectors in a preconditioned Jacobi SVD algorithm , 1999 .
[63] Z. Drmač,et al. On the Perturbation of the Cholesky Factorization , 1994 .
[64] R. T. Gregory. Computing eigenvalues and eigenvectors of a symmetric matrix on the ILLIAC , 1953 .
[65] Ilse C. F. Ipsen,et al. Analysis of a QR Algorithm for Computing Singular Values , 1995, SIAM J. Matrix Anal. Appl..
[66] C. Jacobi. Über ein leichtes Verfahren die in der Theorie der Säcularstörungen vorkommenden Gleichungen numerisch aufzulösen*). , 2022 .
[67] Christian H. Bischof,et al. Computing rank-revealing QR factorizations of dense matrices , 1998, TOMS.
[68] W. Gentleman. Error analysis of QR decompositions by Givens transformations , 1975 .
[69] Ilse C. F. Ipsen,et al. Relative perturbation techniques for singular value problems , 1995 .
[70] P. P. Rijk. A one-sided Jacobi algorithm for computing the singular value decomposition on avector computer , 1989 .
[71] Walter F. Mascarenhas,et al. On the Convergence of the Jacobi Method for Arbitrary Orderings , 1995, SIAM J. Matrix Anal. Appl..
[72] A. Ostrowski,et al. A QUANTITATIVE FORMULATION OF SYLVESTER'S LAW OF INERTIA, II. , 1959, Proceedings of the National Academy of Sciences of the United States of America.
[73] Ren-Cang Li. Relative Perturbation Theory: I. Eigenvalue and Singular Value Variations , 1998, SIAM J. Matrix Anal. Appl..
[74] Christian H. Bischof,et al. A BLAS-3 Version of the QR Factorization with Column Pivoting , 1998, SIAM J. Sci. Comput..
[75] V. Hari,et al. A note on a one-sided Jacobi algorithm , 1989 .
[76] R. Hanson. A Numerical Method for Solving Fredholm Integral Equations of the First Kind Using Singular Values , 1971 .
[77] James Demmel. Underflow and the Reliability of Numerical Software , 1984 .