Analysis of the invasiveness of spotted wing Drosophila (Drosophila suzukii) in North America, Europe, and the Mediterranean Basin

[1]  J. Newman,et al.  North American invasion of Spotted-Wing Drosophila (Drosophila suzukii): A mechanistic model of population dynamics , 2016 .

[2]  A. Gutierrez,et al.  Analysis of the invasiveness of spotted wing Drosophila (Drosophila suzukii) in North America, Europe, and the Mediterranean Basin , 2016, Biological Invasions.

[3]  B. Sinclair,et al.  Reproductive arrest and stress resistance in winter-acclimated Drosophila suzukii. , 2016, Journal of insect physiology.

[4]  N. Mondy,et al.  All or nothing: Survival, reproduction and oxidative balance in Spotted Wing Drosophila (Drosophila suzukii) in response to cold. , 2016, Journal of insect physiology.

[5]  J. Chiu,et al.  Biotic and abiotic factors impacting development, behavior, phenology, and reproductive biology of Drosophila suzukii , 2016, Journal of Pest Science.

[6]  R. Isaacs,et al.  Drosophila suzukii population response to environment and management strategies , 2016, Journal of Pest Science.

[7]  R. Isaacs,et al.  Drosophila suzukii population response to environment and management strategies , 2016, Journal of Pest Science.

[8]  T. Haye,et al.  Non-crop plants used as hosts by Drosophila suzukii in Europe , 2016, Journal of Pest Science.

[9]  J. Chiu,et al.  Seasonal cues induce phenotypic plasticity of Drosophila suzukii to enhance winter survival , 2016, BMC Ecology.

[10]  Xingeng Wang,et al.  Population dynamics and ecology of Drosophila suzukii in Central California , 2016, Journal of Pest Science.

[11]  J. Newman,et al.  Thermal Tolerances of the Spotted-Wing Drosophila Drosophila suzukii (Diptera: Drosophilidae) , 2016, Journal of Economic Entomology.

[12]  V. Walton,et al.  Humidity affects populations of Drosophila suzukii (Diptera: Drosophilidae) in blueberry , 2016 .

[13]  Rufus Isaacs,et al.  Earlier activity of Drosophila suzukii in high woodland landscapes but relative abundance is unaffected , 2016, Journal of Pest Science.

[14]  J. Hagler,et al.  Distribution and activity of Drosophila suzukii in cultivated raspberry and surrounding vegetation , 2016 .

[15]  S. Pasquali,et al.  A modelling framework for pest population dynamics and management: An application to the grape berry moth , 2016 .

[16]  Xingeng Wang,et al.  Overwintering Survival of Drosophila suzukii (Diptera: Drosophilidae) and the Effect of Food on Adult Survival in California's San Joaquin Valley , 2015, Environmental Entomology.

[17]  R. Venette,et al.  Cold Hardiness of Winter-Acclimated Drosophila suzukii (Diptera: Drosophilidae) Adults , 2015, Environmental entomology.

[18]  M. Poyet,et al.  The Wide Potential Trophic Niche of the Asiatic Fruit Fly Drosophila suzukii: The Key of Its Invasion Success in Temperate Europe? , 2015, PloS one.

[19]  Brent J Sinclair,et al.  Adult plasticity of cold tolerance in a continental-temperate population of Drosophila suzukii. , 2015, Journal of insect physiology.

[20]  G. Gilioli,et al.  Physiologically based demographic models streamline identification and collection of data in evidence‐based pest risk assessment , 2015 .

[21]  R. Isaacs,et al.  Invasion biology of spotted wing Drosophila (Drosophila suzukii): a global perspective and future priorities , 2015, Journal of Pest Science.

[22]  R. Isaacs,et al.  Infestation of Wild and Ornamental Noncrop Fruits by Drosophila suzukii (Diptera: Drosophilidae) , 2015 .

[23]  P. J. Moore,et al.  Life‐history trade‐offs under different larval diets in Drosophila suzukii (Diptera: Drosophilidae) , 2015 .

[24]  A. Gutierrez,et al.  Holistic Approach in Invasive Species Research: The Case of the Tomato Leaf Miner in the Mediterranean Basin , 2015 .

[25]  A. Ruane,et al.  Climate forcing datasets for agricultural modeling: Merged products for gap-filling and historical climate series estimation , 2015 .

[26]  F. Zalom,et al.  Seasonal monitoring of Drosophila suzukii (Diptera: Drosophilidae) in a mixed fruit production system , 2014 .

[27]  Gianfranco Anfora,et al.  Integrating Temperature-Dependent Life Table Data into a Matrix Projection Model for Drosophila suzukii Population Estimation , 2014, PloS one.

[28]  Timothy B Sackton,et al.  Drosophila suzukii: The Genetic Footprint of a Recent, Worldwide Invasion , 2014, Molecular biology and evolution.

[29]  A. Cini,et al.  Tracking the invasion of the alien fruit pest Drosophila suzukii in Europe , 2014, Journal of Pest Science.

[30]  J. Newman,et al.  Development, Reproductive Output and Population Growth of the Fruit Fly Pest Drosophila suzukii (Diptera: Drosophilidae) on Artificial Diet , 2014, Journal of economic entomology.

[31]  G. Gilioli,et al.  Comments on the concept of ultra-low, cryptic tropical fruit fly populations , 2014, Proceedings of the Royal Society B: Biological Sciences.

[32]  A. Gutierrez,et al.  The new world screwworm: prospective distribution and role of weather in eradication , 2014 .

[33]  Markus Metz,et al.  Surface Temperatures at the Continental Scale: Tracking Changes with Remote Sensing at Unprecedented Detail , 2014, Remote. Sens..

[34]  P. Shearer,et al.  Temperature-Related Development and Population Parameters for Drosophila suzukii (Diptera: Drosophilidae) on Cherry and Blueberry , 2014, Environmental entomology.

[35]  M. Nakai,et al.  Effects of temperature on the reproduction and development of Drosophila suzukii (Diptera: Drosophilidae) , 2014, Applied Entomology and Zoology.

[36]  S. Pincebourde,et al.  Microclimatic challenges in global change biology , 2013, Global change biology.

[37]  A. Gutierrez,et al.  Eradication of Invasive Species: Why the Biology Matters , 2013, Environmental entomology.

[38]  P. Fontana,et al.  Linking Genomics and Ecology to Investigate the Complex Evolution of an Invasive Drosophila Pest , 2013, Genome biology and evolution.

[39]  R. Isaacs,et al.  Laboratory survival of Drosophila suzukii under simulated winter conditions of the Pacific Northwest and seasonal field trapping in five primary regions of small and stone fruit production in the United States. , 2011, Pest management science.

[40]  Rachael E. Goodhue,et al.  Drosophila suzukii (Diptera: Drosophilidae): Invasive pest of ripening soft fruit expanding its geographic range and damage potential , 2011 .

[41]  C. Rosenzweig,et al.  Handbook of climate change and agroecosystems : impacts, adaptation, and mitigation , 2010 .

[42]  R. Chisholm Invasion Biology , 2010 .

[43]  Heidrun Schumann,et al.  Task-Driven Color Coding , 2008, 2008 12th International Conference Information Visualisation.

[44]  M. Kimura Cold and heat tolerance of drosophilid flies with reference to their latitudinal distributions , 2004, Oecologia.

[45]  J. Pierre,et al.  A Novel Rate Model of Temperature-Dependent Development for Arthropods , 1999 .

[46]  A. Gutierrez Applied Population Ecology: A Supply-Demand Approach , 1996 .

[47]  J. I. Izquierdo How does Drosophila melanogaster overwinter? , 1991 .

[48]  A. Gutierrez,et al.  MULTITROPHIC MODELS OF PREDATOR–PREY ENERGETICS: II. A REALISTIC MODEL OF PLANT–HERBIVORE–PARASITOID–PREDATOR INTERACTIONS , 1984, The Canadian Entomologist.

[49]  John Vansickle,et al.  Attrition in Distributed Delay Models , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[50]  Thomas J. Manetsch,et al.  Time-Varying Distributed Delays and Their Use in Aggregative Models of Large Systems , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[51]  P. A. Moore,et al.  The ecology of Aphis craccivora Koch and Subterranean Clover Stunt Virus in south-east Australia. III. A regional perspective of the phenology and migration of the cowpea aphid. , 1974 .

[52]  H. Dingle,et al.  Migration Strategies of Insects , 1972, Science.

[53]  C. Zebitz,et al.  On the overwintering ability of Drosophila suzukii in South Tyrol , 2015 .

[54]  Jacqueline de Chazal,et al.  Climate change 2007 : impacts, adaptation and vulnerability : Working Group II contribution to the Fourth Assessment Report of the IPCC Intergovernmental Panel on Climate Change , 2014 .

[55]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[56]  R. Allemand,et al.  Drosophila suzukii, vers une lutte biologique contre ce ravageur des fruits rouges (dossier : fruits et légumes) , 2013 .

[57]  C. Rosenzweig,et al.  Climate Change Effects on Plant-Pest-Natural Enemy Interactions , 2010 .

[58]  M. Bieri,et al.  Development and fecundity of pea aphid (Acyrthosiphon pisum Harris) as affected by constant temperatures and by pea varieties , 1983 .

[59]  T. Kanzawa Studies on Drosophila suzukii Mats. , 1939 .