Autoregressive and window estimates of the inverse correlation function

SUMMARY The concept of the inverse correlation function of a stationary process xt was first introduced by Cleveland (1972), who also introduced the autoregressive and the window methods for estimating this function. The asymptotic distribution of the estimates provided by these two methods is derived and their asymptotic covariance structure is shown to be in accordance with a remark of Parzen (1974). The results are extended to show that the two procedures suggested by Durbin (1959, 1961) for estimating the parameters of a moving average model are asymptotically efficient, relative to maximum likelihood in the Gaussian case. Some key word8: Akaike's information criterion; Autoregressive spectral estimate; Inverse correlation function; Inverse covariance function; Moving average model; Window spectral estimate.

[1]  E. Godolphin A direct representation for the maximum likelihood estimator of a Gaussian moving average process , 1977 .

[2]  R. Bhansali Asymptotic Properties of the Wiener‐Kolmogorov Predictor. I , 1974 .

[3]  Ritei Shibata,et al.  CONVERGENCE OF LEAST SQUARES ESTIMATES OF AUTOREGRESSIVE PARAMETERS1 , 1977 .

[4]  E. J. Hannan,et al.  Multiple time series , 1970 .

[5]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[6]  Gwilym M. Jenkins,et al.  General Considerations in the Analysis of Spectra , 1961 .

[7]  J. Durbin EFFICIENT ESTIMATION OF PARAMETERS IN MOVING-AVERAGE MODELS , 1959 .

[8]  David R. Brillinger,et al.  Asymptotic properties of spectral estimates of second order , 1969 .

[9]  James T. McCLAVE On the bias of autoregressive approximations to moving averages , 1973 .

[10]  C. Chatfield,et al.  Fourier Analysis of Time Series: An Introduction , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[11]  U. Grenander,et al.  Statistical analysis of stationary time series , 1957 .

[12]  E. Parzen On Consistent Estimates of the Spectrum of a Stationary Time Series , 1957 .

[13]  William S. Cleveland,et al.  The Inverse Autocorrelations of a Time Series and Their Applications , 1972 .

[14]  John W. Van Ness,et al.  The Maximum Deviation of Sample Spectral Densities , 1967 .

[15]  James T. McClave Estimating the order of moving average models: the max X2 method , 1978 .

[16]  R. Bhansali Linear Prediction by Autoregressive Model Fitting in the Time Domain , 1978 .

[17]  George R. Cooper,et al.  An empirical investigation of the properties of the autoregressive spectral estimator , 1976, IEEE Trans. Inf. Theory.

[18]  Calyampudi Radhakrishna Rao,et al.  Linear Statistical Inference and its Applications , 1967 .

[19]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1972 .

[20]  R. P. Mentz Estimation in the first-order moving average model through the finite autoregressive approximation : Some asymptotic results , 1977 .

[21]  H. Akaike Power spectrum estimation through autoregressive model fitting , 1969 .

[22]  E. Hannan Testing for a Jump in the Spectral Function , 1961 .

[23]  E. Parzen Some recent advances in time series modeling , 1974 .

[24]  ON HANNAN'S ESTIMATION OF ARMA MODELS , 1972 .

[25]  E. Hannan The estimation of mixed moving average autoregressive systems , 1969 .

[26]  H. Akaike A Bayesian extension of the minimum AIC procedure of autoregressive model fitting , 1979 .

[27]  Martin Davis,et al.  A First Course in Functional Analysis , 1966 .

[28]  K. Berk Consistent Autoregressive Spectral Estimates , 1974 .