Approximation and Kernelization for Chordal Vertex Deletion

The Chordal Vertex Deletion (ChVD) problem asks to delete a minimum number of vertices from an input graph to obtain a chordal graph. In this paper we develop a polynomial kernel for ChVD under the parameterization by the solution size, as well as poly(opt) approximation algorithm. The first result answers an open problem of Marx from 2006 [WG 2006, LNCS 4271, 37-48].

[1]  Fanica Gavril,et al.  Algorithms for Minimum Coloring, Maximum Clique, Minimum Covering by Cliques, and Maximum Independent Set of a Chordal Graph , 1972, SIAM J. Comput..

[2]  D. Rose A GRAPH-THEORETIC STUDY OF THE NUMERICAL SOLUTION OF SPARSE POSITIVE DEFINITE SYSTEMS OF LINEAR EQUATIONS , 1972 .

[3]  Peter Buneman,et al.  A characterisation of rigid circuit graphs , 1974, Discret. Math..

[4]  Leslie E. Trotter,et al.  Vertex packings: Structural properties and algorithms , 1975, Math. Program..

[5]  Shuji Tsukiyama,et al.  A New Algorithm for Generating All the Maximal Independent Sets , 1977, SIAM J. Comput..

[6]  John M. Lewis,et al.  The Node-Deletion Problem for Hereditary Properties is NP-Complete , 1980, J. Comput. Syst. Sci..

[7]  D. Rose,et al.  A Separator Theorem for Chordal Graphs , 1982 .

[8]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[9]  Martin Farber,et al.  On diameters and radii of bridged graphs , 1989, Discret. Math..

[10]  S. Louis Hakimi,et al.  Recognizing tough graphs is NP-hard , 1990, Discret. Appl. Math..

[11]  Judy Goldsmith,et al.  Nondeterminism Within P , 1993, SIAM J. Comput..

[12]  Mihalis Yannakakis,et al.  Approximate max-flow min-(multi)cut theorems and their applications , 1993, SIAM J. Comput..

[13]  Hans L. Bodlaender,et al.  On Linear Time Minor Tests with Depth-First Search , 1993, J. Algorithms.

[14]  Mihalis Yannakakis,et al.  The Complexity of Multiterminal Cuts , 1994, SIAM J. Comput..

[15]  Peisen Zhang,et al.  An algorithm based on graph theory for the assembly of contigs in physical mapping of DNA , 1994, Comput. Appl. Biosci..

[16]  Mihalis Yannakakis,et al.  Multiway Cuts in Directed and Node Weighted Graphs , 1994, ICALP.

[17]  Dan Geiger,et al.  Optimization of Pearl's Method of Conditioning and Greedy-Like Approximation Algorithms for the Vertex Feedback Set Problem , 1996, Artif. Intell..

[18]  Piotr Berman,et al.  A 2-Approximation Algorithm for the Undirected Feedback Vertex Set Problem , 1999, SIAM J. Discret. Math..

[19]  Reuven Bar-Yehuda,et al.  A unified approach to approximating resource allocation and scheduling , 2000, STOC '00.

[20]  Anupam Gupta Improved results for directed multicut , 2003, SODA '03.

[21]  Leizhen Cai,et al.  Parameterized Complexity of Vertex Colouring , 2003, Discret. Appl. Math..

[22]  L. Pósa,et al.  On Independent Circuits Contained in a Graph , 1965, Canadian Journal of Mathematics.

[23]  Amit Agarwal,et al.  O(√log n) approximation algorithms for min UnCut, min 2CNF deletion, and directed cut problems , 2005, STOC '05.

[24]  James R. Lee,et al.  Improved approximation algorithms for minimum-weight vertex separators , 2005, STOC '05.

[25]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[26]  Michael R. Fellows,et al.  The Undirected Feedback Vertex Set Problem Has a Poly(k) Kernel , 2006, IWPEC.

[27]  Dániel Marx Chordal Deletion is Fixed-Parameter Tractable , 2008, Algorithmica.

[28]  Hans L. Bodlaender,et al.  A Cubic Kernel for Feedback Vertex Set and Loop Cutset , 2010, Theory of Computing Systems.

[29]  Frank Kammer,et al.  The k-Disjoint Paths Problem on Chordal Graphs , 2009, WG.

[30]  Dimitrios M. Thilikos,et al.  (Meta) Kernelization , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[31]  Stéphan Thomassé,et al.  A 4k2 kernel for feedback vertex set , 2010, TALG.

[32]  Dieter van Melkebeek,et al.  Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses , 2010, STOC '10.

[33]  Rolf Niedermeier,et al.  Approximation and Tidying—A Problem Kernel for s-Plex Cluster Vertex Deletion , 2009, Algorithmica.

[34]  Pim van 't Hof,et al.  Parameterized complexity of vertex deletion into perfect graph classes , 2011, Theor. Comput. Sci..

[35]  Daniel Lokshtanov Kernelization: An Overview , 2011, FCT.

[36]  Saket Saurabh,et al.  Kernelization - Preprocessing with a Guarantee , 2012, The Multivariate Algorithmic Revolution and Beyond.

[37]  Fedor V. Fomin,et al.  Planar F-Deletion: Approximation, Kernelization and Optimal FPT Algorithms , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[38]  Stefan Kratsch,et al.  Representative Sets and Irrelevant Vertices: New Tools for Kernelization , 2011, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[39]  Fedor V. Fomin,et al.  A Polynomial Kernel for Proper Interval Vertex Deletion , 2013, SIAM J. Discret. Math..

[40]  Michal Pilipczuk,et al.  A Subexponential Parameterized Algorithm for Proper Interval Completion , 2014, ESA.

[41]  Yixin Cao,et al.  Chordal Editing is Fixed-Parameter Tractable , 2014, STACS.

[42]  Michal Pilipczuk,et al.  Preprocessing subgraph and minor problems: When does a small vertex cover help? , 2012, J. Comput. Syst. Sci..

[43]  Stefan Kratsch,et al.  Compression via Matroids: A Randomized Polynomial Kernel for Odd Cycle Transversal , 2011, TALG.

[44]  Stefan Kratsch,et al.  Recent developments in kernelization: A survey , 2014, Bull. EATCS.

[45]  Yixin Cao,et al.  Interval Deletion Is Fixed-Parameter Tractable , 2012, SODA.

[46]  Saket Saurabh,et al.  Uniform Kernelization Complexity of Hitting Forbidden Minors , 2015, ICALP.

[47]  Michal Pilipczuk,et al.  Exploring the Subexponential Complexity of Completion Problems , 2015, TOCT.

[48]  Michal Pilipczuk,et al.  Subexponential Parameterized Algorithm for Interval Completion , 2016, SODA.

[49]  Christophe Paul,et al.  Linear Kernels and Single-Exponential Algorithms Via Protrusion Decompositions , 2012, ICALP.

[50]  Yixin Cao,et al.  Linear Recognition of Almost Interval Graphs , 2014, SODA.

[51]  Jakub Gajarský,et al.  Kernelization Using Structural Parameters on Sparse Graph Classes , 2013, ESA.