Effects of coumarin and saccharin on electrodeposition of Ni from a hydrophobic ionic liquid

[1]  H. Vehoff,et al.  Effects of processing on texture, internal stresses and mechanical properties during the pulsed electrodeposition of nanocrystalline and ultrafine-grained nickel , 2013 .

[2]  R. Srinivasan,et al.  Effect of additives on electrodeposition of nickel from acetate bath: cyclic voltammetric study , 2013 .

[3]  Youqi Zhu,et al.  Effects of acetone and thiourea on electrodeposition of Ni from a hydrophobic ionic liquid , 2012 .

[4]  A. Sharma,et al.  Pulse electrodeposition of nanocrystalline nickel on AA 6061 for space applications , 2012 .

[5]  Y. Katayama,et al.  The Influence of Potential on Electrodeposition of Silver and Formation of Silver Nanoparticles in Some Ionic Liquids , 2011 .

[6]  Guohua Wu,et al.  Tailoring nickel coatings via electrodeposition from a eutectic-based ionic liquid doped with nicotinic acid , 2011 .

[7]  M. Bahrololoom,et al.  Electrodeposition of nanocrystalline Zn–Ni alloy from alkaline glycinate bath containing saccharin as additive , 2011 .

[8]  Y. Katayama,et al.  The effect of organic additives in electrodeposition of Co from an amide-type ionic liquid , 2011 .

[9]  Yan-li Zhu,et al.  Effects of acetonitrile on electrodeposition of Ni from a hydrophobic ionic liquid , 2010 .

[10]  K. Kanai,et al.  Double layer structure and adsorption/desorption hysteresis of neat ionic liquid on Pt electrode surface — an in-situ IR-visible sum-frequency generation spectroscopic study , 2010 .

[11]  Y. Katayama,et al.  Electrochemical behavior of Ni(II)/Ni in a hydrophobic amide-type room-temperature ionic liquid , 2009 .

[12]  A. Rashidi,et al.  The effect of saccharin addition and bath temperature on the grain size of nanocrystalline nickel coatings , 2009 .

[13]  A. Mishra,et al.  Effect of deposition parameters on microstructure of electrodeposited nickel thin films , 2009 .

[14]  T. Ohsaka,et al.  Capacitance Measurements in a Series of Room-Temperature Ionic Liquids at Glassy Carbon and Gold Electrode Interfaces , 2008 .

[15]  Naoki Tachikawa,et al.  Electrochemistry of Sn(II)/Sn in a hydrophobic room-temperature ionic liquid , 2008 .

[16]  A. Abbott,et al.  Electrodeposition of nickel using eutectic based ionic liquids , 2008 .

[17]  S. Baldelli,et al.  Surface structure at the ionic liquid-electrified metal interface. , 2008, Accounts of chemical research.

[18]  Po-Yu Chen,et al.  Electrochemical study and electrodeposition of manganese in the hydrophobic butylmethylpyrrolidinium bis((trifluoromethyl)sulfonyl)imide room-temperature ionic liquid , 2007 .

[19]  G. P. Kalaignan,et al.  The role of additives in the electrodeposition of nickel–cobalt alloy from acetate electrolyte , 2007 .

[20]  Naoki Tachikawa,et al.  Electrochemical behavior of several iron complexes in hydrophobic room-temperature ionic liquids , 2007 .

[21]  F. Endres,et al.  Electrodeposition of selenium, indium and copper in an air- and water-stable ionic liquid at variable temperatures , 2007 .

[22]  A. Abbott,et al.  Application of ionic liquids to the electrodeposition of metals. , 2006, Physical chemistry chemical physics : PCCP.

[23]  F. Endres,et al.  Additive free electrodeposition of nanocrystalline aluminium in a water and air stable ionic liquid , 2005 .

[24]  Young‐Chang Joo,et al.  Effect of saccharin addition on the microstructure of electrodeposited Fe–36 wt.% Ni alloy , 2005 .

[25]  F. Endres,et al.  A study on the electrodeposition of tantalum on NiTi alloy in an ionic liquid and corrosion behaviour of the coated alloy , 2005 .

[26]  Naoki Tachikawa,et al.  Electrochemical behavior of iron(II) species in a hydrophobic room-temperature molten salt , 2005 .

[27]  A. Ciszewski,et al.  Effects of saccharin and quaternary ammonium chlorides on the electrodeposition of nickel from a Watts-type electrolyte , 2004 .

[28]  Frank Endres,et al.  Electrodeposition of nanoscale silicon in a room temperature ionic liquid , 2004 .

[29]  Diana Golodnitsky,et al.  The role of anion additives in the electrodeposition of nickel–cobalt alloys from sulfamate electrolyte , 2002 .

[30]  K. Liddell,et al.  Effect of thiourea and saccharin on the roughness of electrodeposited ultrathin nickel and cobalt layers , 2002 .

[31]  B. Hwang,et al.  Nucleation and growth mechanism of electroformation of polypyrrole on a heat-treated gold/highly oriented pyrolytic graphite , 2001 .

[32]  Maria Forsyth,et al.  High conductivity molten salts based on the imide ion , 2000 .

[33]  V. Koch,et al.  Differential Capacitance Measurements in Solvent‐Free Ionic Liquids at Hg and C Interfaces , 1997 .

[34]  M. Troyon,et al.  Influence of saccharin on the structure and corrosion resistance of electrodeposited Cu/Ni multilayers , 1996 .

[35]  N. Munichandraiah,et al.  Influence of additives on the electrodeposition of nickel from a Watts bath: a cyclic voltammetric study , 1993 .

[36]  L. Muresan,et al.  Some fundamental aspects of levelling and brightening in metal electrodeposition , 1991 .

[37]  Roger Parsons,et al.  The electrical double layer: recent experimental and theoretical developments , 1990 .

[38]  B. Scharifker,et al.  Theoretical and experimental studies of multiple nucleation , 1983 .

[39]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[40]  M. Froment,et al.  The Influence of Unsaturated Organic Molecules in the Electrocrystallization of Nickel , 1973 .

[41]  K. Taylor,et al.  The reactions of coumarin, cinnamyl alcohol, butynediol and propargyl alcohol at an electrode on which nickel is depositing , 1966 .

[42]  H. Dahms,et al.  The Anomalous Codeposition of Iron‐Nickel Alloys , 1965 .

[43]  M. J. Levett,et al.  Radiotracer Study of Addition Agent Behaviour: 6—Coumarin and Melilotic Acid , 1964 .

[44]  R. Weil,et al.  Electron‐Microscopic Observations of the Structure of Electroplated Nickel , 1962 .

[45]  H. Leidheiser,et al.  The Interaction of Organic Compounds with the Surface during the Electrodeposition of Nickel , 1953 .