Topological Factors Derived from Bohmian Mechanics
暂无分享,去创建一个
Roderich Tumulka | Sheldon Goldstein | Detlef Dürr | Nino Zanghì | D. Dürr | S. Goldstein | N. Zanghí | R. Tumulka | James Taylor | James Taylor
[1] D. Dürr,et al. A survey of Bohmian mechanics , 1995 .
[2] J. Bell. On the Problem of Hidden Variables in Quantum Mechanics , 1966 .
[3] S. Goldstein,et al. Bohmian mechanics as the foundation of quantum mechanics , 1995, quant-ph/9511016.
[4] D. Bohm. A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF "HIDDEN" VARIABLES. II , 1952 .
[5] C. DeWitt-Morette,et al. Techniques and Applications of Path Integration , 1981 .
[6] Michael George Gray Laidlaw,et al. Quantum Mechanics in Multiply Connected Spaces. , 1971 .
[7] G. Morandi. The Role of Topology in Classical and Quantum Physics , 1992 .
[8] J. S. Dowker. Quantum mechanics and field theory on multiply connected and on homogeneous spaces , 1972 .
[9] C. Dewitt,et al. Feynman Functional Integrals for Systems of Indistinguishable Particles , 1971 .
[10] D. Dürr,et al. Quantum equilibrium and the origin of absolute uncertainty , 1992, quant-ph/0308039.
[11] L. Schulman. A Path integral for spin , 1968 .
[12] Sheldon Goldstein,et al. Quantum Equilibrium and the Role of Operators as Observables in Quantum Theory , 2003, quant-ph/0308038.
[13] Simple Proof for Global Existence of Bohmian Trajectories , 2004, math-ph/0406030.
[14] K. Berndl,et al. On the global existence of Bohmian mechanics , 1995, quant-ph/9503013.
[15] Yakir Aharonov,et al. Topological Quantum Effects for Neutral Particles , 1984 .
[16] Quantum mechanics in multiply-connected spaces , 2005, quant-ph/0506173.
[17] Gerald A. Goldin,et al. Representations of a local current algebra in nonsimply connected space and the Aharonov–Bohm effect , 1981 .
[18] J. Myrheim,et al. On the theory of identical particles , 1977 .
[19] Frank Wilczek,et al. Quantum Mechanics of Fractional-Spin Particles , 1982 .
[20] T. Nieuwenhuizen. What are quantum fluctuations , 2007 .