Topological Factors Derived from Bohmian Mechanics

AbstractWe derive for Bohmian mechanics topological factors for quantum systems with a multiply-connected configuration space $$ \mathcal{Q}. $$ These include nonabelian factors corresponding to what we call holonomy-twisted representations of the fundamental group of $$ \mathcal{Q}. $$ We employ wave functions on the universal covering space of $$ \mathcal{Q}. $$ As a byproduct of our analysis, we obtain an explanation, within the framework of Bohmian mechanics, of the fact that the wave function of a system of identical particles is either symmetric or anti-symmetric.Communicated by Yosi Avron

[1]  D. Dürr,et al.  A survey of Bohmian mechanics , 1995 .

[2]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[3]  S. Goldstein,et al.  Bohmian mechanics as the foundation of quantum mechanics , 1995, quant-ph/9511016.

[4]  D. Bohm A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF "HIDDEN" VARIABLES. II , 1952 .

[5]  C. DeWitt-Morette,et al.  Techniques and Applications of Path Integration , 1981 .

[6]  Michael George Gray Laidlaw,et al.  Quantum Mechanics in Multiply Connected Spaces. , 1971 .

[7]  G. Morandi The Role of Topology in Classical and Quantum Physics , 1992 .

[8]  J. S. Dowker Quantum mechanics and field theory on multiply connected and on homogeneous spaces , 1972 .

[9]  C. Dewitt,et al.  Feynman Functional Integrals for Systems of Indistinguishable Particles , 1971 .

[10]  D. Dürr,et al.  Quantum equilibrium and the origin of absolute uncertainty , 1992, quant-ph/0308039.

[11]  L. Schulman A Path integral for spin , 1968 .

[12]  Sheldon Goldstein,et al.  Quantum Equilibrium and the Role of Operators as Observables in Quantum Theory , 2003, quant-ph/0308038.

[13]  Simple Proof for Global Existence of Bohmian Trajectories , 2004, math-ph/0406030.

[14]  K. Berndl,et al.  On the global existence of Bohmian mechanics , 1995, quant-ph/9503013.

[15]  Yakir Aharonov,et al.  Topological Quantum Effects for Neutral Particles , 1984 .

[16]  Quantum mechanics in multiply-connected spaces , 2005, quant-ph/0506173.

[17]  Gerald A. Goldin,et al.  Representations of a local current algebra in nonsimply connected space and the Aharonov–Bohm effect , 1981 .

[18]  J. Myrheim,et al.  On the theory of identical particles , 1977 .

[19]  Frank Wilczek,et al.  Quantum Mechanics of Fractional-Spin Particles , 1982 .

[20]  T. Nieuwenhuizen What are quantum fluctuations , 2007 .