Scheduling the finnish major ice hockey league

Generating a schedule for a professional sports league is an extremely demanding task. Good schedules have many benefits for the league, such as higher incomes, lower costs and more interesting and fairer seasons. This paper presents a successful way to schedule the Finnish major ice hockey league. The method is a combination of local search heuristics and evolutionary methods. The generated schedule is currently in use for the 2008-2009 season.

[1]  Michael A. Trick,et al.  A Benders approach for the constrained minimum break problem , 2007, Eur. J. Oper. Res..

[2]  P. Masson,et al.  A constrained sports scheduling problem , 1989, Discret. Appl. Math..

[3]  C. Colbourn,et al.  The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.

[4]  Jan A. M. Schreuder,et al.  Combinatorial aspects of construction of competition Dutch Professional Football Leagues , 1992, Discret. Appl. Math..

[5]  Rasmus V. Rasmussen Scheduling a triple round robin tournament for the best Danish soccer league , 2008, Eur. J. Oper. Res..

[6]  Dominique de Werra,et al.  Some models of graphs for scheduling sports competitions , 1988, Discret. Appl. Math..

[7]  Mike B. Wright,et al.  Scheduling fixtures for Basketball New Zealand , 2006, Comput. Oper. Res..

[8]  George L. Nemhauser,et al.  The Traveling Tournament Problem Description and Benchmarks , 2001, CP.

[9]  Michael A. Trick,et al.  Round robin scheduling - a survey , 2008, Eur. J. Oper. Res..

[10]  Andrea Schaerf,et al.  Scheduling Sport Tournaments using Constraint Logic Programming , 1999, Constraints.

[11]  Kimmo Nurmi,et al.  A Framework for School Timetabling Problem , 2007 .

[12]  Pascal Van Hentenryck,et al.  Minimizing Breaks in Sport Scheduling with Local Search , 2005, ICAPS.

[13]  Federico Della Croce,et al.  Scheduling the Italian Football League: an ILP-based approach , 2006, Comput. Oper. Res..

[14]  Martin Henz,et al.  Scheduling a Major College Basketball Conference - Revisited , 2001, Oper. Res..

[15]  Celso C. Ribeiro,et al.  Minimizing Travels by Maximizing Breaks in Round Robin Tournament Schedules , 2004, Electron. Notes Discret. Math..

[16]  D. Werra Scheduling in Sports , 1981 .

[17]  Pascal Van Hentenryck,et al.  A simulated annealing approach to the traveling tournament problem , 2006, J. Sched..

[18]  Dries R. Goossens,et al.  Scheduling the Belgian Soccer League , 2009, Interfaces.

[19]  Guillermo Durán,et al.  Scheduling the Chilean Soccer League by Integer Programming , 2007, Interfaces.

[20]  Joseph Y.-T. Leung,et al.  Handbook of Scheduling: Algorithms, Models, and Performance Analysis , 2004 .

[21]  Daniel Costa,et al.  An Evolutionary Tabu Search Algorithm And The NHL Scheduling Problem , 1995 .

[22]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[23]  P. Harker,et al.  Scheduling a Major College Basketball Conference , 1998 .

[24]  J. A. M. Schreuder,et al.  Constructing timetables for sport competitions , 1980 .

[25]  Jin-Kao Hao,et al.  Solving the Sports League Scheduling Problem with Tabu Search , 2000, Local Search for Planning and Scheduling.

[26]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[27]  Jean-Charles Régin Minimization of the number of breaks in sports scheduling problems using constraint programming , 1998, Constraint Programming and Large Scale Discrete Optimization.

[29]  Mike Wright,et al.  Timetabling County Cricket Fixtures Using a Form of Tabu Search , 1994 .

[30]  Andreas Drexl,et al.  Scheduling the professional soccer leagues of Austria and Germany , 2006, Comput. Oper. Res..

[31]  Walter D. Wallis,et al.  Scheduling a Tournament , 2006 .

[32]  Michael Jünger,et al.  Minimizing breaks by maximizing cuts , 2003, Oper. Res. Lett..

[33]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .