Development and Applications of CRISPR-Cas9 for Genome Engineering

[1]  Kira S. Makarova,et al.  Classification and evolution of type II CRISPR-Cas systems , 2014, Nucleic acids research.

[2]  David A. Scott,et al.  Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells , 2014, Nature Biotechnology.

[3]  Jeffry D. Sander,et al.  CRISPR-Cas systems for editing, regulating and targeting genomes , 2014, Nature Biotechnology.

[4]  Jennifer A. Doudna,et al.  Structures of Cas9 Endonucleases Reveal RNA-Mediated Conformational Activation , 2014, Science.

[5]  Wei-Ting Hwang,et al.  Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. , 2014, The New England journal of medicine.

[6]  Hao Yin,et al.  Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype , 2014, Nature Biotechnology.

[7]  George H. Silva,et al.  Comprehensive analysis of the specificity of transcription activator-like effector nucleases , 2014, Nucleic acids research.

[8]  Lei Wang,et al.  Generation of Gene-Modified Cynomolgus Monkey via Cas9/RNA-Mediated Gene Targeting in One-Cell Embryos , 2014, Cell.

[9]  Feng Zhang,et al.  Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA , 2014, Cell.

[10]  Jennifer A. Doudna,et al.  DNA interrogation by the CRISPR RNA-guided endonuclease Cas9 , 2014, Nature.

[11]  J. Keith Joung,et al.  Improving CRISPR-Cas nuclease specificity using truncated guide RNAs , 2014, Nature Biotechnology.

[12]  Wei Zhang,et al.  Dynamic Imaging of Genomic Loci in Living Human Cells by an Optimized CRISPR/Cas System , 2014, Cell.

[13]  Anirvan Ghosh,et al.  Increased Brain Penetration and Potency of a Therapeutic Antibody Using a Monovalent Molecular Shuttle , 2014, Neuron.

[14]  Neville E. Sanjana,et al.  Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells , 2014, Science.

[15]  E. Lander,et al.  Genetic Screens in Human Cells Using the CRISPR-Cas9 System , 2013, Science.

[16]  Kira S. Makarova,et al.  Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems , 2013, Nucleic acids research.

[17]  Jennifer Couzin-Frankel,et al.  Breakthrough of the year 2013. Cancer immunotherapy. , 2013, Science.

[18]  Hans Clevers,et al.  Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. , 2013, Cell stem cell.

[19]  Wei Tang,et al.  Correction of a genetic disease in mouse via use of CRISPR-Cas9. , 2013, Cell stem cell.

[20]  Jeffry D Sander,et al.  Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins , 2013, Nature Biotechnology.

[21]  Prashant Mali,et al.  Orthogonal Cas9 Proteins for RNA-Guided Gene Regulation and Editing , 2013, Nature Methods.

[22]  J. Joung,et al.  Locus-specific editing of histone modifications at endogenous enhancers using programmable TALE-LSD1 fusions , 2013, Nature Biotechnology.

[23]  Eli J. Fine,et al.  DNA targeting specificity of RNA-guided Cas9 nucleases , 2013, Nature Biotechnology.

[24]  David A. Scott,et al.  Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity , 2013, Cell.

[25]  Nicholas E. Propson,et al.  Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis , 2013, Proceedings of the National Academy of Sciences.

[26]  David R. Liu,et al.  High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity , 2013, Nature Biotechnology.

[27]  Qi Zhou,et al.  Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems , 2013, Nature Biotechnology.

[28]  G. Church,et al.  CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering , 2013, Nature Biotechnology.

[29]  R. Jaenisch,et al.  One-Step Generation of Mice Carrying Reporter and Conditional Alleles by CRISPR/Cas-Mediated Genome Engineering , 2013, Cell.

[30]  Christopher M. Vockley,et al.  RNA-guided gene activation by CRISPR-Cas9-based transcription factors , 2013, Nature Methods.

[31]  Morgan L. Maeder,et al.  CRISPR RNA-guided activation of endogenous human genes , 2013, Nature Methods.

[32]  Luke A. Gilbert,et al.  CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes , 2013, Cell.

[33]  Randall J. Platt,et al.  Optical Control of Mammalian Endogenous Transcription and Epigenetic States , 2013, Nature.

[34]  J. Keith Joung,et al.  High frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells , 2013, Nature Biotechnology.

[35]  Jörg Vogel,et al.  Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. , 2013, Molecular cell.

[36]  Rudolf Jaenisch,et al.  One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering , 2013, Cell.

[37]  Emmanuelle Charpentier,et al.  The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems , 2013, RNA biology.

[38]  M. Rowicka,et al.  Nucleotide-resolution DNA double-strand breaks mapping by next-generation sequencing , 2013, Nature Methods.

[39]  Feng Zhang,et al.  CRISPR-assisted editing of bacterial genomes , 2013, Nature Biotechnology.

[40]  Seung Woo Cho,et al.  Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease , 2013, Nature Biotechnology.

[41]  Luke A. Gilbert,et al.  Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression , 2013, Cell.

[42]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[43]  G. Dianov,et al.  Mammalian Base Excision Repair: the Forgotten Archangel , 2013, Nucleic acids research.

[44]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[45]  Jennifer Doudna,et al.  RNA-programmed genome editing in human cells , 2013, eLife.

[46]  Shiraz A. Shah,et al.  Protospacer recognition motifs Mixed identities and functional diversity , 2013 .

[47]  R. Barrangou,et al.  CRISPR-Cas Systems: RNA-mediated Adaptive Immunity in Bacteria and Archaea , 2013 .

[48]  R. Barrangou,et al.  Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria , 2012, Proceedings of the National Academy of Sciences.

[49]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[50]  T. Gajewski,et al.  Cancer immunotherapy , 2012, Molecular oncology.

[51]  Joshua R. Elmore,et al.  Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs. , 2012, Molecular cell.

[52]  Jeffrey C. Miller,et al.  An unbiased genome-wide analysis of zinc-finger nuclease specificity , 2011, Nature Biotechnology.

[53]  Philippe Horvath,et al.  The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli , 2011, Nucleic acids research.

[54]  Eugene V Koonin,et al.  Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems , 2011, Biology Direct.

[55]  Stan J. J. Brouns,et al.  Evolution and classification of the CRISPR–Cas systems , 2011, Nature Reviews Microbiology.

[56]  Elo Leung,et al.  A TALE nuclease architecture for efficient genome editing , 2011, Nature Biotechnology.

[57]  J. Vogel,et al.  CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III , 2011, Nature.

[58]  Feng Zhang,et al.  Selection-Free Zinc-Finger Nuclease Engineering by Context-Dependent Assembly (CoDA) , 2010, Nature Methods.

[59]  Jonathan C. Cohen,et al.  Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. , 2010, The New England journal of medicine.

[60]  Philippe Horvath,et al.  The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA , 2010, Nature.

[61]  H. Ackermann,et al.  Streptococcus thermophilus bacteriophages. , 2010 .

[62]  Erin L. Doyle,et al.  Targeting DNA Double-Strand Breaks with TAL Effector Nucleases , 2010, Genetics.

[63]  Michael T. McManus,et al.  Faculty Opinions recommendation of Self versus non-self discrimination during CRISPR RNA-directed immunity. , 2010 .

[64]  B. González,et al.  Modular system for the construction of zinc-finger libraries and proteins , 2010, Nature Protocols.

[65]  S. Hughes,et al.  Altering the Genome by Homologous Recombination , 2010 .

[66]  Jens Boch,et al.  Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors , 2009, Science.

[67]  Matthew J. Moscou,et al.  A Simple Cipher Governs DNA Recognition by TAL Effectors , 2009, Science.

[68]  B. Graveley,et al.  RNA-Guided RNA Cleavage by a CRISPR RNA-Cas Protein Complex , 2009, Cell.

[69]  Philippe Horvath,et al.  Comparative analysis of CRISPR loci in lactic acid bacteria genomes. , 2009, International journal of food microbiology.

[70]  L. Marraffini,et al.  CRISPR Interference Limits Horizontal Gene Transfer in Staphylococci by Targeting DNA , 2008, Science.

[71]  Stan J. J. Brouns,et al.  Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes , 2008, Science.

[72]  Ronnie J Winfrey,et al.  Rapid "open-source" engineering of customized zinc-finger nucleases for highly efficient gene modification. , 2008, Molecular cell.

[73]  Philippe Horvath,et al.  Phage Response to CRISPR-Encoded Resistance in Streptococcus thermophilus , 2007, Journal of bacteriology.

[74]  Philippe Horvath,et al.  Diversity, Activity, and Evolution of CRISPR Loci in Streptococcus thermophilus , 2007, Journal of bacteriology.

[75]  Donald Kennedy,et al.  Breakthrough of the Year , 2007, Science.

[76]  Luigi Naldini,et al.  Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery , 2007, Nature Biotechnology.

[77]  Adam James Waite,et al.  An improved zinc-finger nuclease architecture for highly specific genome editing , 2007, Nature Biotechnology.

[78]  R. Barrangou,et al.  CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes , 2007, Science.

[79]  P. Duchateau,et al.  A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences , 2006, Nucleic acids research.

[80]  Miroslav Radman,et al.  Reassembly of shattered chromosomes in Deinococcus radiodurans , 2006, Nature.

[81]  N. Grishin,et al.  A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action , 2006, Biology Direct.

[82]  Daniel H. Haft,et al.  A Guild of 45 CRISPR-Associated (Cas) Protein Families and Multiple CRISPR/Cas Subtypes Exist in Prokaryotic Genomes , 2005, PLoS Comput. Biol..

[83]  Jeffrey C. Miller,et al.  Highly efficient endogenous human gene correction using designed zinc-finger nucleases , 2005, Nature.

[84]  G. Vergnaud,et al.  CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. , 2005, Microbiology.

[85]  Alexander Pertsemlidis,et al.  Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9 , 2005, Nature Genetics.

[86]  S. Ehrlich,et al.  Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. , 2005, Microbiology.

[87]  J. García-Martínez,et al.  Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements , 2005, Journal of Molecular Evolution.

[88]  Dana Carroll,et al.  Enhancing Gene Targeting with Designed Zinc Finger Nucleases , 2003, Science.

[89]  J. Couzin Small RNAs Make Big Splash , 2002, Science.

[90]  Dana Carroll,et al.  Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. , 2002, Genetics.

[91]  A. Hüttenhofer,et al.  Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[92]  L. Schouls,et al.  Identification of genes that are associated with DNA repeats in prokaryotes , 2002, Molecular microbiology.

[93]  Dana Carroll,et al.  Stimulation of Homologous Recombination through Targeted Cleavage by Chimeric Nucleases , 2001, Molecular and Cellular Biology.

[94]  U. Schopfer,et al.  Chemically Regulated Zinc Finger Transcription Factors* , 2000, The Journal of Biological Chemistry.

[95]  D. Solter,et al.  Timely translation during the mouse oocyte-to-embryo transition. , 2000, Development.

[96]  F. J. Mojica,et al.  Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria , 2000, Molecular microbiology.

[97]  C. Barbas,et al.  Positive and negative regulation of endogenous genes by designed transcription factors. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[98]  T. Bestor,et al.  Cytosine methylation targetted to pre-determined sequences , 1997, Nature Genetics.

[99]  B. Dujon,et al.  Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae , 1995, Molecular and cellular biology.

[100]  P. Rouet,et al.  Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. , 1994, Molecular and cellular biology.

[101]  B. Dujon,et al.  Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus. , 1992, Genetics.

[102]  J. Haber,et al.  Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. , 1989, Genetics.

[103]  K. Makino,et al.  Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product , 1987, Journal of bacteriology.