2-toroids and their 3-triangulation

It is known that we can always 3-triangulate (i.e. divide into tetrahedra) convex polyhedra but not always non-convex polyhedra. Here we discuss possibilities and properties of 3-triangulation of 2-toroids, i.e. polyhedra topologically equivalent to sphere with 2 handles, and develop the concepts of piecewise convex polyhedra and graph of connection.

[1]  S. Szabó Polyhedra without diagonals , 1984 .

[2]  Francisco Santos,et al.  16 SUBDIVISIONS AND TRIANGULATIONS OF POLYTOPES , 2017 .

[3]  M. Stojanovic On 3-triangulation of toroids , 2015 .

[4]  M. Stojanovic,et al.  ALGORITHMS FOR INVESTIGATING OPTIMALITY OF CONE TRIANGULATION FOR A POLYHEDRON , 2007 .

[5]  Sándor Szabó Polyhedra without diagonals II , 2009, Period. Math. Hung..

[6]  M. Stojanovic,et al.  CONVEX POLYHEDRA WITH TRIANGULAR FACES AND CONE TRIANGULATION , 2011 .

[7]  Francis Y. L. Chin,et al.  Approximation for Minimum Triangulations of Simplicial Convex 3-Polytopes , 2001, Discret. Comput. Geom..

[8]  M. Stojanovic,et al.  TRIANGULATIONS OF SOME CASES OF POLYHEDRA WITH A SMALL NUMBER OF TETRAHEDRA , 2008 .

[9]  Bernard Chazelle Triangulating a simple polygon in linear time , 1991, Discret. Comput. Geom..

[10]  J. Bokowski,et al.  All Realizations of Möbius' Torus with 7 Vertices , 1991 .

[11]  Mike Develin Maximal triangulations of a regular prism , 2004, J. Comb. Theory, Ser. A.

[12]  M. Stojanovic Algorithms for Triangulating Polyhedra Into a Small Number of Tethraedra , 2005 .

[13]  H. Edelsbrunner,et al.  Tetrahedrizing Point Sets in Three Dimensions , 1988, ISSAC.

[14]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[15]  Raimund Seidel,et al.  On the difficulty of triangulating three-dimensional Nonconvex Polyhedra , 1992, Discret. Comput. Geom..

[16]  Raimund Seidel,et al.  A Simple and Fast Incremental Randomized Algorithm for Computing Trapezoidal Decompositions and for Triangulating Polygons , 1991, Comput. Geom..

[17]  E. Schönhardt,et al.  Über die Zerlegung von Dreieckspolyedern in Tetraeder , 1928 .

[18]  David Avis,et al.  Triangulating point sets in space , 1987, Discret. Comput. Geom..