Dynamic stochastic copula models: Estimation, inference and applications

We propose a new dynamic copula model where the parameter characterizing dependence follows an autoregressive process. As this model class includes the Gaussian copula with stochastic correlation process, it can be viewed as a generalization of multivariate stochastic volatility models. Despite the complexity of the model, the decoupling of marginals and dependence parameters facilitates estimation. We propose estimation in two steps, where first the parameters of the marginal distributions are estimated, and then those of the copula. Parameters of the latent processes (volatilities and dependence) are estimated using efficient importance sampling (EIS). We discuss goodness-of-fit tests and ways to forecast the dependence parameter. For two bivariate stock index series, we show that the proposed model outperforms standard competing models.

[1]  P. Clark A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices , 1973 .

[2]  L. Ederington,et al.  The Hedging Performance of the New Futures Markets , 1979 .

[3]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[4]  Jonathan D. Cryer,et al.  Time Series Analysis , 1986 .

[5]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[6]  Stephen L Taylor,et al.  Modelling Financial Time Series , 1987 .

[7]  C. Genest,et al.  Statistical Inference Procedures for Bivariate Archimedean Copulas , 1993 .

[8]  J. Richard,et al.  Accelerated gaussian importance sampler with application to dynamic latent variable models , 1993 .

[9]  Peter E. Rossi,et al.  Bayesian Analysis of Stochastic Volatility Models , 1994 .

[10]  Jón Dańıelsson Stochastic volatility in asset prices estimation with simulated maximum likelihood , 1994 .

[11]  N. Shephard,et al.  Multivariate stochastic variance models , 1994 .

[12]  N. Shephard,et al.  Stochastic Volatility: Likelihood Inference And Comparison With Arch Models , 1996 .

[13]  A. Ledford,et al.  Statistics for near independence in multivariate extreme values , 1996 .

[14]  H. Joe Multivariate models and dependence concepts , 1998 .

[15]  Siem Jan Koopman,et al.  Time Series Analysis of Non-Gaussian Observations Based on State Space Models from Both Classical and Bayesian Perspectives , 1999 .

[16]  Jon Danielsson,et al.  Multivariate stochastic volatility models: Estimation and a comparison with VGARCH models , 1998 .

[17]  Siem Jan Koopman,et al.  Estimation of stochastic volatility models via Monte Carlo maximum likelihood , 1998 .

[18]  A. V. D. Vaart,et al.  Asymptotic Statistics: Frontmatter , 1998 .

[19]  B. Jørgensen,et al.  A state-space model for multivariate longitudinal count data , 1999 .

[20]  Chris Kirby,et al.  The Economic Value of Volatility Timing , 2000 .

[21]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[22]  R. Engle Dynamic Conditional Correlation , 2002 .

[23]  T. Bedford,et al.  Vines: A new graphical model for dependent random variables , 2002 .

[24]  Markus Junker,et al.  Nonlinear Term Structure Dependence: Copula Functions, Empirics, and Risk Implications , 2003 .

[25]  Wolfgang Breymann,et al.  Dependence structures for multivariate high-frequency data in finance , 2003 .

[26]  David S. Stoffer Time series analysis by state space models: J. Durbin and S. J. Koopman; Oxford University Press, Oxford, 2001, pp 253 + xvii, ISBN: 0 19 852354 8 , 2003, Autom..

[27]  J. Richard,et al.  Univariate and Multivariate Stochastic Volatility Models: Estimation and Diagnostics , 2003 .

[28]  E. Ruiz,et al.  Persistence and Kurtosis in GARCH and Stochastic Volatility Models , 2004 .

[29]  Denis Pelletier,et al.  Regime Switching for Dynamic Correlations , 2006 .

[30]  E. Ruiz,et al.  Estimation Methods for Stochastic Volatility Models: A Survey , 2004 .

[31]  Olivier Ledoit,et al.  A well-conditioned estimator for large-dimensional covariance matrices , 2004 .

[32]  H. Joe Asymptotic efficiency of the two-stage estimation method for copula-based models , 2005 .

[33]  Jun Yu,et al.  Multivariate Stochastic Volatility Models: Bayesian Estimation and Model Comparison , 2006 .

[34]  J. Richard,et al.  Classical and Bayesian Analysis of Univariate and Multivariate Stochastic Volatility Models , 2006 .

[35]  Andrew J. Patton Modelling Asymmetric Exchange Rate Dependence , 2006 .

[36]  B. Rémillard,et al.  Goodness-of-fit tests for copulas: A review and a power study , 2006 .

[37]  Bruno Rémillard,et al.  Goodness‐of‐fit Procedures for Copula Models Based on the Probability Integral Transformation , 2006 .

[38]  Xiaohong Chen,et al.  Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification , 2006 .

[39]  Friedrich Schmid,et al.  A goodness of fit test for copulas based on Rosenblatt's transformation , 2007, Comput. Stat. Data Anal..

[40]  J. Richard,et al.  Efficient high-dimensional importance sampling , 2007 .

[41]  Roberto Casarin,et al.  Particle Filters for Markov-Switching Stochastic-Correlation Models , 2008 .

[42]  M. McAleer,et al.  The structure of dynamic correlations in multivariate stochastic volatility models , 2009 .

[43]  J. Segers,et al.  Tails of correlation mixtures of elliptical copulas , 2009, 0912.3516.

[44]  Lorán Chollete,et al.  Modeling International Financial Returns with a Multivariate Regime-switching Copula , 2009 .

[45]  A. Frigessi,et al.  Pair-copula constructions of multiple dependence , 2009 .