Forest Height Estimation Using Multibaseline PolInSAR and Sparse Lidar Data Fusion

We demonstrate a method using lidar data fusion to improve the forest height estimation accuracy of multibaseline polarimetric synthetic aperture radar interferometry (PolInSAR). Compared to single-baseline PolInSAR, multibaseline PolInSAR allows forest canopy height to be estimated more accurately across a wider range of height values. However, to arrive at a single forest height estimate, the estimates from the multiple baselines must be selected or weighted. A number of approaches to selecting between baselines have been proposed in the literature, but they are generally based on simple metrics of the PolInSAR data and do not necessarily capture the full range of characteristics that make one baseline produce more accurate forest height estimates than another. We solve this problem by treating baseline selection as a supervised classification problem that can be trained using a small amount of sparse lidar data located within the PolInSAR coverage area. We train a support vector machine classifier using a variety of coarse lidar sample spacings of 250 m and greater, to demonstrate that data from future spaceborne lidar missions will be sufficient for this purpose. We demonstrate results for multiple study areas in the country of Gabon using data collected by NASA's uninhabited aerial vehicle synthetic aperture radar and land, vegetation, and ice sensor lidar. The use of lidar fusion for PolInSAR baseline selection yields improved results compared to standard baseline selection methods, and further demonstrates the strong potential of PolInSAR and lidar fusion for remote sensing of forests.

[1]  Sushil Kumar Joshi,et al.  Spaceborne PolSAR Tomography for Forest Height Retrieval , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[2]  R. Dubayah,et al.  Combining Tandem-X InSAR and simulated GEDI lidar observations for forest structure mapping , 2016 .

[3]  Kostas Papathanassiou,et al.  First demonstration of airborne SAR tomography using multibaseline L-band data , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[4]  M. Vastaranta,et al.  Combining Lidar and Synthetic Aperture Radar Data to Estimate Forest Biomass: Status and Prospects , 2015 .

[5]  Marc Simard,et al.  Kapok: An open source python library for polinsar forest height estimation using uavsar data , 2017, 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[6]  Scott J. Goetz,et al.  The Global Ecosystem Dynamics Investigation (GEDI) Lidar , 2014 .

[7]  M. Moghaddam,et al.  Vegetation characteristics and underlying topography from interferometric radar , 1996 .

[8]  Konstantinos Papathanassiou,et al.  Single-baseline polarimetric SAR interferometry , 2001, IEEE Trans. Geosci. Remote. Sens..

[9]  R. Houghton,et al.  Aboveground Forest Biomass and the Global Carbon Balance , 2005 .

[10]  B. Nelson,et al.  Improved allometric models to estimate the aboveground biomass of tropical trees , 2014, Global change biology.

[11]  James Llinas,et al.  An introduction to multisensor data fusion , 1997, Proc. IEEE.

[12]  Irena Hajnsek,et al.  3-D structure observation of African tropical forests with multi-baseline SAR: Results from the AfriSAR campaign , 2017, 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[13]  Carlos López-Martínez,et al.  Assessment and Estimation of the RVoG Model in Polarimetric SAR Interferometry , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Irena Hajnsek,et al.  MULTIBASELINE POLARIMETRIC SAR INTERFEROMETRY FOREST HEIGHT INVERSION APPROACHES , 2011 .

[15]  Stefano Tebaldini,et al.  Single and Multipolarimetric SAR Tomography of Forested Areas: A Parametric Approach , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Xavier Dupuis,et al.  Preliminary results of the AfriSAR campaign , 2016 .

[17]  Konstantinos Papathanassiou,et al.  Pine Forest Height Inversion Using Single-Pass X-Band PolInSAR Data , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Yang Lei,et al.  Estimation of Forest Height Using Spaceborne Repeat-Pass L-Band InSAR Correlation Magnitude over the US State of Maine , 2014, Remote. Sens..

[19]  Maxim Neumann,et al.  Some first polarimetric-interferometric multi-baseline and tomographic results at Harvard forest using UAVSAR , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[20]  Irena Hajnsek,et al.  Height Estimation of Boreal Forest: Interferometric Model-Based Inversion at L- and X-Band Versus HUTSCAT Profiling Scatterometer , 2007, IEEE Geoscience and Remote Sensing Letters.

[21]  Seung-Kuk Lee,et al.  TanDEM-X Pol-InSAR Inversion for Mangrove Canopy Height Estimation , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[22]  Yang Lei,et al.  An Automatic Mosaicking Algorithm for the Generation of a Large-Scale Forest Height Map Using Spaceborne Repeat-Pass InSAR Correlation Magnitude , 2015, Remote. Sens..

[23]  R. Treuhaft,et al.  Vertical structure of vegetated land surfaces from interferometric and polarimetric radar , 2000 .

[24]  Erich Meier,et al.  3-D Time-Domain SAR Imaging of a Forest Using Airborne Multibaseline Data at L- and P-Bands , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Hiroyoshi Yamada,et al.  PolInSAR Coherence Region Modeling and Inversion: The Best Normal Matrix Approximation Solution , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[26]  Philippe Réfrégier,et al.  Cramer–Rao Lower Bound Analysis of Vegetation Height Estimation With Random Volume Over Ground Model and Polarimetric SAR Interferometry , 2011, IEEE Geoscience and Remote Sensing Letters.

[27]  Irena Hajnsek,et al.  Tropical-Forest-Parameter Estimation by Means of Pol-InSAR: The INDREX-II Campaign , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[28]  M. Simard,et al.  Height and biomass of mangroves in Africa from ICESat/GLAS and SRTM , 2013 .

[29]  Maurizio Santoro,et al.  Model-Based Biomass Estimation of a Hemi-Boreal Forest from Multitemporal TanDEM-X Acquisitions , 2013, Remote. Sens..

[30]  Konstantinos P. Papathanassiou,et al.  Polarimetric SAR interferometry , 1998, IEEE Trans. Geosci. Remote. Sens..

[31]  Marco Lavalle,et al.  Extraction of Structural and Dynamic Properties of Forests From Polarimetric-Interferometric SAR Data Affected by Temporal Decorrelation , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[32]  David J. Harding,et al.  The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation , 2017 .

[33]  Xinwu Li,et al.  Combination of PolInSAR and LiDAR Techniques for Forest Height Estimation , 2017, IEEE Geoscience and Remote Sensing Letters.

[34]  S. Cloude,et al.  Three-stage inversion process for polarimetric SAR interferometry , 2003 .

[35]  Stefano Tebaldini,et al.  Multibaseline Polarimetric SAR Tomography of a Boreal Forest at P- and L-Bands , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Iain H. Woodhouse,et al.  EVALUATING POLINSAR TREE HEIGHT AND TOPOGRAPHY RETRIEVALS IN GLEN AFFRIC , 2003 .

[37]  Marc Simard,et al.  An Assessment of Temporal Decorrelation Compensation Methods for Forest Canopy Height Estimation Using Airborne L-Band Same-Day Repeat-Pass Polarimetric SAR Interferometry , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[38]  Maxim Neumann,et al.  Assessing Performance of L- and P-Band Polarimetric Interferometric SAR Data in Estimating Boreal Forest Above-Ground Biomass , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[39]  Irena Hajnsek,et al.  TanDEM-X Pol-InSAR Performance for Forest Height Estimation , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[40]  Thomas Flynn,et al.  Coherence region shape extraction for vegetation parameter estimation in polarimetric SAR interferometry , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[41]  Jaan Praks,et al.  LIDAR-Aided SAR Interferometry Studies in Boreal Forest: Scattering Phase Center and Extinction Coefficient at X- and L-Band , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[42]  Irena Hajnsek,et al.  Quantification of Temporal Decorrelation Effects at L-Band for Polarimetric SAR Interferometry Applications , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[43]  Thuy Le Toan,et al.  P-Band SAR tomography for the characterization of tropical forests , 2017, 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[44]  Bruce Chapman,et al.  UAVSAR Polarimetric Calibration , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[45]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[46]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[47]  Bernhard Schölkopf,et al.  Comparing support vector machines with Gaussian kernels to radial basis function classifiers , 1997, IEEE Trans. Signal Process..

[48]  Laurent Ferro-Famil,et al.  Estimation of Forest Structure, Ground, and Canopy Layer Characteristics From Multibaseline Polarimetric Interferometric SAR Data , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[49]  G. Sadowy,et al.  UAVSAR: New NASA Airborne SAR System for Research , 2007, IEEE Aerospace and Electronic Systems Magazine.

[50]  Pascale Dubois-Fernandez,et al.  Forest Height Inversion Using High-Resolution P-Band Pol-InSAR Data , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[51]  Hao Tang,et al.  A Lidar-Radar Framework to Assess the Impact of Vertical Forest Structure on Interferometric Coherence , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[52]  Federico Castanedo,et al.  A Review of Data Fusion Techniques , 2013, TheScientificWorldJournal.

[53]  Irena Hajnsek,et al.  Forest Height Estimation by Means of Pol-InSAR Data Inversion: The Role of the Vertical Wavenumber , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[54]  Louis V. Verchot,et al.  Generic allometric models including height best estimate forest biomass and carbon stocks in Indonesia , 2013 .

[55]  Fernando Vicente-Guijalba,et al.  A Simple RVoG Test for PolInSAR Data , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[56]  Marco Lavalle,et al.  Three-Baseline InSAR Estimation of Forest Height , 2014, IEEE Geoscience and Remote Sensing Letters.

[57]  Erich Meier,et al.  Analyzing Tomographic SAR Data of a Forest With Respect to Frequency, Polarization, and Focusing Technique , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[58]  E. Pottier,et al.  Polarimetric Radar Imaging: From Basics to Applications , 2009 .

[59]  Marc Simard,et al.  The effects of temporal decorrelation and topographic slope on forest height retrieval using airborne repeat-pass L-band polarimetric SAR interferometry , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[60]  Xinwu Li,et al.  Compressive Sensing for Multibaseline Polarimetric SAR Tomography of Forested Areas , 2016, IEEE Transactions on Geoscience and Remote Sensing.