Sorting of rice grains using Zernike moments

Two important factors that determine the efficiency and reliability of a rice sorting machine are the overall processing speed and the classification accuracy. In this paper, an efficient rice sorting process which uses a subset of Zernike moments (ZM) and a multilayer perceptron is presented. Since the falling rice grains during sorting process can be in any orientation, a rotational invariant feature set is crucial in this application. Hence, the set of ZM with its inherent rotational invariance property is chosen in this context. Nevertheless, one of the main drawbacks of ZM in real-time application is its long computation time. To overcome this, a subset of ZM is selected from its original full set of 12 orders, using the combination of fuzzy ARTMAP and genetic algorithm. To further reduce the computation time, the combination of q-recursive method and Zernike polynomials’ inherent symmetry property is utilized. Hence, the processing time of the subset of ZM is significantly reduced by almost 67% while maintaining the classification accuracy as compared to computing the original full set of ZMs.

[1]  Alireza Khotanzad,et al.  Rotation invariant pattern recognition using Zernike moments , 1988, [1988 Proceedings] 9th International Conference on Pattern Recognition.

[2]  Alireza Khotanzad,et al.  Classification of invariant image representations using a neural network , 1990, IEEE Trans. Acoust. Speech Signal Process..

[3]  Alireza Khotanzad,et al.  Invariant Image Recognition by Zernike Moments , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Gail A. Carpenter,et al.  Distributed Learning, Recognition, and Prediction by ART and ARTMAP Neural Networks , 1997, Neural Networks.

[5]  R. Mukundan,et al.  Moment Functions in Image Analysis: Theory and Applications , 1998 .

[6]  Rajiv Mehrotra,et al.  Edge detection using orthogonal moment-based operators , 1992, Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol. III. Conference C: Image, Speech and Signal Analysis,.

[7]  Randy L. Haupt,et al.  Practical Genetic Algorithms , 1998 .

[8]  Stephen Grossberg,et al.  Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps , 1992, IEEE Trans. Neural Networks.

[9]  Mitsuo Gen,et al.  Genetic Algorithms & Engineering Optimization , 2000 .

[10]  Eric C. Kintner,et al.  On the Mathematical Properties of the Zernike Polynomials , 1976 .

[11]  von F. Zernike Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode , 1934 .

[12]  Miroslaw Pawlak,et al.  On the Accuracy of Zernike Moments for Image Analysis , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  A. Prata,et al.  Algorithm for computation of Zernike polynomials expansion coefficients. , 1989, Applied optics.

[14]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[15]  Roland T. Chin,et al.  On Image Analysis by the Methods of Moments , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Stephen Grossberg,et al.  A fuzzy ARTMAP nonparametric probability estimator for nonstationary pattern recognition problems , 1995, IEEE Trans. Neural Networks.

[17]  Raveendran Paramesran,et al.  New computational methods for full and subset Zernike moments , 2004, Inf. Sci..

[18]  Raveendran Paramesran,et al.  Fast Computation of Zernike Moments For Rice Sorting System , 2007, 2007 IEEE International Conference on Image Processing.

[19]  Miroslaw Pawlak,et al.  On the reconstruction aspects of moment descriptors , 1992, IEEE Trans. Inf. Theory.

[20]  Sugata Ghosal,et al.  Segmentation of range images: an orthogonal moment-based integrated approach , 1993, IEEE Trans. Robotics Autom..

[21]  Hiroshi Kadota,et al.  Feature reduction of Zernike moments using genetic algorithm for neural network classification of rice grain , 2002, Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290).

[22]  M. Teague Image analysis via the general theory of moments , 1980 .

[23]  Raveendran Paramesran,et al.  Classification of Rice Grain Using New Scale Invariant Zernike Moments , 2002, JCIS.

[24]  Chee-Way Chong,et al.  An Efficient Algorithm for Fast computation of Zernike Moments , 2002, Joint Conference on Information Sciences.

[25]  Chee-Way Chong,et al.  Translation invariants of Zernike moments , 2003, Pattern Recognit..

[26]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[27]  Lakhmi C. Jain,et al.  Neural Network Training Using Genetic Algorithms , 1996 .

[28]  Chee-Way Chong,et al.  An Efficient Algorithm for Fast Computation of Pseudo-Zernike Moments , 2003, Int. J. Pattern Recognit. Artif. Intell..

[29]  Mark R. Morelande,et al.  Modeling of corneal surfaces with radial polynomials , 2002, IEEE Transactions on Biomedical Engineering.

[30]  Miroslaw Pawlak,et al.  On Image Analysis by Moments , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Raveendran Paramesran,et al.  Efficient computation of radial moment functions using symmetrical property , 2006, Pattern Recognit..

[32]  Chee-Way Chong,et al.  A comparative analysis of algorithms for fast computation of Zernike moments , 2003, Pattern Recognit..