Spectra of positive and negative energies in the linearized NLS problem
暂无分享,去创建一个
Dmitry E. Pelinovsky | Scipio Cuccagna | Vitali Vougalter | V. Vougalter | D. Pelinovsky | S. Cuccagna
[1] Dmitry E. Pelinovsky,et al. Inertia law for spectral stability of solitary waves in coupled nonlinear Schrödinger equations , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[2] J. S. Howland,et al. PUISEUX SERIES FOR RESONANCES AT AN EMBEDDED EIGENVALUE , 1974 .
[3] P. H. Müller,et al. T. Kato, Perturbation theory for linear operators. (Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band 132) XX + 592 S. m. 3 Fig. Berlin/Heidelberg/New York Springer-Verlag. Preis geb. DM 79,20 , 1967 .
[4] J. S. Howland. On the Weinstein-Aronszajn formula , 1970 .
[5] Tai-Peng Tsai,et al. Relaxation of excited states in nonlinear Schrödinger equations , 2001 .
[6] Tai-Peng Tsai,et al. STABLE DIRECTIONS FOR EXCITED STATES OF NONLINEAR SCHRÖDINGER EQUATIONS , 2001, math-ph/0110037.
[7] S. Cuccagna. Stabilization of solutions to nonlinear Schrödinger equations , 2001 .
[8] Tosio Kato. Perturbation theory for linear operators , 1966 .
[9] Shmuel Agmon,et al. Spectral properties of Schrödinger operators and scattering theory , 1975 .
[10] Mark S. C. Reed,et al. Method of Modern Mathematical Physics , 1972 .
[11] Barry Simon,et al. Quantum Mechanics for Hamiltonians Defined as Quadratic Forms , 1971 .
[12] Eigenvalues of zero energy in the linearized NLS problem , 2006 .
[13] M. Grillakis,et al. Analysis of the linearization around a critical point of an infinite dimensional Hamiltonian system , 1990 .
[14] Christopher K. R. T. Jones,et al. An instability mechanism for radially symmetric standing waves of a nonlinear Schrödinger equation , 1988 .
[15] J. Rauch. Local decay of scattering solutions to Schrödinger's equation , 1978 .
[16] Walter A. Strauss,et al. Nonlinear Wave Equations , 1990 .
[17] G. Perelman. Asymptotic stability of solitary waves for nonlinear Schrödinger equations , 2003 .
[18] J. Shatah,et al. Stability theory of solitary waves in the presence of symmetry, II☆ , 1990 .
[19] M. Weinstein. Lyapunov stability of ground states of nonlinear dispersive evolution equations , 1986 .
[20] Kevin McLeod,et al. Uniqueness of positive radial solutions of Δ+()=0 in ⁿ. II , 1993 .
[21] I. Rodnianski,et al. Dispersive analysis of charge transfer models , 2003, math/0309112.
[22] M. Reed. Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .
[23] Todd Kapitula,et al. Edge Bifurcations for Near Integrable Systems via Evans Function Techniques , 2002, SIAM J. Math. Anal..
[24] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[25] 敏夫 加藤,et al. Wave operators and similarity for some non-selfadjoint operators , 1966 .
[26] C. Sulem,et al. On asymptotic stability of solitary waves for nonlinear Schrödinger equations , 2003 .
[27] Todd Kapitula,et al. Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems , 2004 .
[28] Dmitry E. Pelinovsky,et al. Purely nonlinear instability of standing waves with minimal energy , 2003 .
[29] A. Soffer,et al. Time Dependent Resonance Theory , 1998 .
[30] Barry Simon,et al. Analysis of Operators , 1978 .
[31] James Serrin,et al. Uniqueness of positive radial solutions of Δu+f(u)=0 in ℝn , 1987 .
[32] B. Simon. Functional integration and quantum physics , 1979 .
[33] Stanly Steinberg,et al. Meromorphic families of compact operators , 1968 .