Spectra of positive and negative energies in the linearized NLS problem

We study the spectrum of the linearized NLS equation in three dimensions in association with the energy spectrum. We prove that unstable eigenvalues of the linearized NLS problem are related to negative eigenvalues of the energy spectrum, while neutrally stable eigenvalues may have both positive and negative energies. The nonsingular part of the neutrally stable essential spectrum is always related to the positive energy spectrum. We derive bounds on the number of unstable eigenvalues of the linearized NLS problem and study bifurcations of embedded eigenvalues of positive and negative energies. We develop the L 2 scattering theory for the linearized NLS operators and recover results of Grillakis [5] with a Fermi golden rule. c

[1]  Dmitry E. Pelinovsky,et al.  Inertia law for spectral stability of solitary waves in coupled nonlinear Schrödinger equations , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[2]  J. S. Howland,et al.  PUISEUX SERIES FOR RESONANCES AT AN EMBEDDED EIGENVALUE , 1974 .

[3]  P. H. Müller,et al.  T. Kato, Perturbation theory for linear operators. (Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band 132) XX + 592 S. m. 3 Fig. Berlin/Heidelberg/New York Springer-Verlag. Preis geb. DM 79,20 , 1967 .

[4]  J. S. Howland On the Weinstein-Aronszajn formula , 1970 .

[5]  Tai-Peng Tsai,et al.  Relaxation of excited states in nonlinear Schrödinger equations , 2001 .

[6]  Tai-Peng Tsai,et al.  STABLE DIRECTIONS FOR EXCITED STATES OF NONLINEAR SCHRÖDINGER EQUATIONS , 2001, math-ph/0110037.

[7]  S. Cuccagna Stabilization of solutions to nonlinear Schrödinger equations , 2001 .

[8]  Tosio Kato Perturbation theory for linear operators , 1966 .

[9]  Shmuel Agmon,et al.  Spectral properties of Schrödinger operators and scattering theory , 1975 .

[10]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[11]  Barry Simon,et al.  Quantum Mechanics for Hamiltonians Defined as Quadratic Forms , 1971 .

[12]  Eigenvalues of zero energy in the linearized NLS problem , 2006 .

[13]  M. Grillakis,et al.  Analysis of the linearization around a critical point of an infinite dimensional Hamiltonian system , 1990 .

[14]  Christopher K. R. T. Jones,et al.  An instability mechanism for radially symmetric standing waves of a nonlinear Schrödinger equation , 1988 .

[15]  J. Rauch Local decay of scattering solutions to Schrödinger's equation , 1978 .

[16]  Walter A. Strauss,et al.  Nonlinear Wave Equations , 1990 .

[17]  G. Perelman Asymptotic stability of solitary waves for nonlinear Schrödinger equations , 2003 .

[18]  J. Shatah,et al.  Stability theory of solitary waves in the presence of symmetry, II☆ , 1990 .

[19]  M. Weinstein Lyapunov stability of ground states of nonlinear dispersive evolution equations , 1986 .

[20]  Kevin McLeod,et al.  Uniqueness of positive radial solutions of Δ+()=0 in ⁿ. II , 1993 .

[21]  I. Rodnianski,et al.  Dispersive analysis of charge transfer models , 2003, math/0309112.

[22]  M. Reed Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .

[23]  Todd Kapitula,et al.  Edge Bifurcations for Near Integrable Systems via Evans Function Techniques , 2002, SIAM J. Math. Anal..

[24]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[25]  敏夫 加藤,et al.  Wave operators and similarity for some non-selfadjoint operators , 1966 .

[26]  C. Sulem,et al.  On asymptotic stability of solitary waves for nonlinear Schrödinger equations , 2003 .

[27]  Todd Kapitula,et al.  Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems , 2004 .

[28]  Dmitry E. Pelinovsky,et al.  Purely nonlinear instability of standing waves with minimal energy , 2003 .

[29]  A. Soffer,et al.  Time Dependent Resonance Theory , 1998 .

[30]  Barry Simon,et al.  Analysis of Operators , 1978 .

[31]  James Serrin,et al.  Uniqueness of positive radial solutions of Δu+f(u)=0 in ℝn , 1987 .

[32]  B. Simon Functional integration and quantum physics , 1979 .

[33]  Stanly Steinberg,et al.  Meromorphic families of compact operators , 1968 .