Assessment of Coralline Species Diversity in the European Coasts Supported by Sequencing of Type Material: The Case Study of Lithophyllum nitorum (Corallinales, Rhodophyta)

Abstract A constant effort in sequencing an extensive number of specimens originating from comprehensive sampling had return an unprecedented amount of information fostering our understanding of diversity, evolution and distribution of coralline algae; however, many sequences lack reliable assignation of a taxonomic name, specially at the species level. Recently, the sequencing of type material allowed to bridge this gap by providing a direct link between the DNA sequence and the type bearing name. For instance, in the genus Lithophyllum, the identity of three species, generally abundant along the European Atlantic and the Mediterranean, was demonstrated by including sequences of the type material. Nevertheless, for less conspicious species, such as Lithophyllum nitorum, data are still needed to assess distribution, anatomy, phylogenetic affinities and taxonomic status. Using DNA sequences recovered from the type material of L. nitorum, further recent collections were resolved as conspecific and used to improve the description and refine the distribution of this species. Lithophyllum nitorum consisted of subtidal, thin crusts overgrowing fragments of dead maerl, pebbles and drifted fragments of fishing lines. The presence of uniporate conceptacles markedly protruding can be considered an external morphological feature useful to identify L. nitorum from other subtidal Lithophyllum species with similar habitat. Lithophyllum nitorum is reported for the Mediterranean Sea and confirmed in the North East Atlantic, a similar distribution as for L. incrustans and L. hibernicum.

[1]  V. Peña,et al.  Insights into species diversity of associated crustose coralline algae ( Corallinophycidae, Rhodophyta ) with Atlantic European maerl beds using DNA barcoding , 2017 .

[2]  V. Peña,et al.  Timing of the evolutionary history of Corallinaceae (Corallinales, Rhodophyta) , 2017, Journal of phycology.

[3]  F. Rindi,et al.  Genetic and morphological variation in an ecosystem engineer, Lithophyllum byssoides (Corallinales, Rhodophyta) , 2017, Journal of phycology.

[4]  F. Delsuc,et al.  Toward the DNA Library of Life , 2017 .

[5]  V. Freire,et al.  Tipo de división en esporocistes de Lithophyllum hibernicum (Corallinales, Rhodophyta) y su implicación en el ciclo vital en el Atlántico europeo , 2016 .

[6]  V. Peña,et al.  Reassessment of branched Lithophyllum spp. (Corallinales, Rhodophyta) in the Caribbean Sea with global implications , 2016 .

[7]  V. Peña,et al.  Phylogenetic relationships of corallinaceae (Corallinales, Rhodophyta): taxonomic implications for reef‐building corallines , 2016, Journal of phycology.

[8]  V. Peña,et al.  Phymatolithon lusitanicum sp. nov. (Hapalidiales, Rhodophyta): The Third Most Abundant Maerl-Forming Species in the Atlantic Iberian Peninsula , 2015 .

[9]  A. Channing,et al.  DNA sequencing resolves species of Spongites (Corallinales, Rhodophyta) in the Northeast Pacific and South Africa, including S. agulhensis sp. nov. , 2015 .

[10]  S. Heesch,et al.  Sequencing type material resolves the identity and distribution of the generitype Lithophyllum incrustans, and related European species L. hibernicum and L. bathyporum (Corallinales, Rhodophyta) , 2015, Journal of phycology.

[11]  D. Basso,et al.  The genus Lithophyllum in the north-western Indian Ocean, with description of L. yemenense sp. nov., L. socotraense sp. nov., L. subplicatum comb. et stat. nov., and the resumed L. affine, L. kaiseri, and L. subreduncum (Rhodophyta, Corallinales) , 2015 .

[12]  W. Adey,et al.  DNA sequencing, anatomy, and calcification patterns support a monophyletic, subarctic, carbonate reef‐forming Clathromorphum (Hapalidiaceae, Corallinales, Rhodophyta) , 2015, Journal of phycology.

[13]  L. le Gall,et al.  An integrative systematic approach to species diversity and distribution in the genus Mesophyllum (Corallinales, Rhodophyta) in Atlantic and Mediterranean Europe , 2015 .

[14]  S. Fredericq,et al.  New Insights into the Genus Lithophyllum (Lithophylloideae, Corallinaceae, Corallinales) from Deepwater Rhodolith Beds Offshore the NW Gulf of Mexico , 2014 .

[15]  J. Hall‐Spencer,et al.  The diversity of seaweeds on maerl in the NE Atlantic , 2014, Marine Biodiversity.

[16]  V. Peña,et al.  Detection of Gametophytes in the Maerl-Forming Species Phymatolithon calcareum (Melobesioideae, Corallinales) Assessed by DNA Barcoding , 2014 .

[17]  Koichiro Tamura,et al.  MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. , 2013, Molecular biology and evolution.

[18]  Ramón Doallo,et al.  CircadiOmics: integrating circadian genomics, transcriptomics, proteomics and metabolomics , 2012, Nature Methods.

[19]  C. Cruaud,et al.  Barcoding type specimens helps to identify synonyms and an unnamed new species in Eumunida Smith, 1883 (Decapoda:Eumunididae) , 2011 .

[20]  O. Gascuel,et al.  SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. , 2010, Molecular biology and evolution.

[21]  W. Nelson,et al.  Utility of psbA and nSSU for phylogenetic reconstruction in the Corallinales based on New Zealand taxa. , 2008, Molecular phylogenetics and evolution.

[22]  E. Ballesteros,et al.  Mediterranean coralligenous assemblages: A synthesis of present knowledge , 2006 .

[23]  G. Saunders,et al.  Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[24]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[25]  Debashish Bhattacharya,et al.  A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[26]  J. Aguirre,et al.  Taxonomy of fossil coralline algal species: Neogene Lithophylloideae (Rhodophyta, Corallinaceae) from southern Spain , 1995 .

[27]  Y. Chamberlain,et al.  A redescription of Lithophyllum orbiculatum (Rhodophyta, Corallinales) in the British Isles and a reassessment of generic delimitation in the Lithophylloideae , 1991 .

[28]  Y. Chamberlain,et al.  A redescription of Lithophyllum crouanii (Rhodophyta, Corallinales) in the British Isles with an assessment of its relationship to L. orbiculatum , 1988 .

[29]  W. Adey Algal ridges of the Caribbean sea and West Indies , 1978 .

[30]  W. Adey,et al.  Studies on the biosystematics and ecology of the Epilithic Crustose Corallinaceae of the British Isles , 1973 .

[31]  I. Bárbara,et al.  El orden Corallinales "sensu lato" (Rhodophyta) en el Atlántico ibérico: estado actual de su conocimiento , 2016 .

[32]  G. Saunders,et al.  Methods for DNA barcoding photosynthetic protists emphasizing the macroalgae and diatoms. , 2012, Methods in molecular biology.

[33]  L. Bittner Phylogénie des Corallinales (Rhodophyta) et analyse de leur diversité génétique dans le Pacifique Sud , 2009 .

[34]  B. Thiers,et al.  Index Herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden's Virtual Herbarium. , 2009 .

[35]  P. Hebert,et al.  bold: The Barcode of Life Data System (http://www.barcodinglife.org) , 2007, Molecular ecology notes.

[36]  Noel H. Holmgren,et al.  Index Herbariorum: A global directory of public herbaria and associated staff , 1998 .

[37]  Y. Chamberlain,et al.  Seaweeds of the British Isles: Volume 1 Rhodophyta. Part 2B Corallinales, Hildenbrandiales , 1994 .