Continuous data assimilation for the 2D magnetohydrodynamic equations using one component of the velocity and magnetic fields

We propose several continuous data assimilation (downscaling) algorithms based on feedback control for the 2D magnetohydrodynamic (MHD) equations. We show that for sufficiently large choices of the control parameter and resolution and assuming that the observed data is error-free, the solution of the controlled system converges exponentially (in $L^2$ and $H^1$ norms) to the reference solution independently of the initial data chosen for the controlled system. Furthermore, we show that a similar result holds when controls are placed only on the horizontal (or vertical) variables, or on a single Els\"asser variable, under more restrictive conditions on the control parameter and resolution. Finally, using the data assimilation system, we show the existence of abridged determining modes, nodes and volume elements.

[1]  L. Driel-Gesztelyi An Introduction to Magnetohydrodynamics , 2004 .

[2]  Bernardo Cockburn,et al.  Determining degrees of freedom for nonlinear dissipative equations , 1995 .

[3]  Meinhard E. Mayer,et al.  Navier-Stokes Equations and Turbulence , 2008 .

[4]  M. Richards,et al.  Mantle–circulation models with sequential data assimilation: inferring present–day mantle structure from plate–motion histories , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  Animikh Biswas,et al.  Higher-order synchronization for a data assimilation algorithm for the 2D Navier–Stokes equations , 2017 .

[6]  On the transport and concentration of enstrophy in 3D magnetohydrodynamic turbulence , 2012, 1211.3083.

[7]  Edriss S. Titi,et al.  Continuous Data Assimilation for a 2D Bénard Convection System Through Horizontal Velocity Measurements Alone , 2016, J. Nonlinear Sci..

[8]  Hakima Bessaih,et al.  Continuous data assimilation with stochastically noisy data , 2014, 1406.1533.

[9]  Hantaek Bae Navier-Stokes equations , 1992 .

[10]  A. Jackson,et al.  Variational data assimilation for a forced, inertia-free magnetohydrodynamic dynamo model , 2014 .

[11]  R. A. Wentzell,et al.  Hydrodynamic and Hydromagnetic Stability. By S. CHANDRASEKHAR. Clarendon Press: Oxford University Press, 1961. 652 pp. £5. 5s. , 1962, Journal of Fluid Mechanics.

[12]  Edriss S. Titi,et al.  Continuous data assimilation for the three-dimensional Brinkman–Forchheimer-extended Darcy model , 2015, 1502.00964.

[13]  D.S. Bernstein,et al.  A Comparison of the Extended and Unscented Kalman Filters for Discrete-Time Systems with Nondifferentiable Dynamics , 2007, 2007 American Control Conference.

[14]  Dennis S. Bernstein,et al.  Data assimilation for magnetohydrodynamics systems , 2006 .

[15]  D. McKenzie,et al.  INFERRING THE MAGNETOHYDRODYNAMIC STRUCTURE OF SOLAR FLARE SUPRA-ARCADE PLASMAS FROM A DATA-ASSIMILATED FIELD TRANSPORT MODEL , 2016 .

[16]  Edriss S. Titi,et al.  Continuous Data Assimilation Using General Interpolant Observables , 2013, J. Nonlinear Sci..

[17]  P. Secchi On the equations of ideal incompressible magneto-hydrodynamics , 1993 .

[18]  W. Kuang,et al.  Data assimilation in a sparsely observed one-dimensional modeled MHD system , 2007 .

[19]  Roger Temam,et al.  Some mathematical questions related to the MHD equations , 1983 .

[20]  I. Kukavica,et al.  Existence and Regularity of Invariant Measures for the Three Dimensional Stochastic Primitive Equations , 2013, 1311.4204.

[21]  Edriss S. Titi,et al.  Postprocessing Galerkin method applied to a data assimilation algorithm: a uniform in time error estimate , 2016, 1612.06998.

[22]  E. Titi,et al.  On the Charney Conjecture of Data Assimilation Employing Temperature Measurements Alone: The Paradigm of 3D Planetary Geostrophic Model , 2016, 1608.04770.

[23]  Donald A. Jones,et al.  Determining finite volume elements for the 2D Navier-Stokes equations , 1992 .

[24]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[25]  M. Pedder,et al.  Atmospheric data analysis: by Roger Daley, Cambridge University Press. Cambridge atmospheric and space science series, 2. 457 pages. Published 1991. Price: £55,-/U.S. $79.50 ISBN 0 521 382157. , 1992 .

[26]  C. Johnson,et al.  Global geomagnetic field models for the past 3000 years: transient or permanent flux lobes? , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[27]  Edriss S. Titi,et al.  Determining Modes for Continuous Data Assimilation in 2D Turbulence , 2003 .

[28]  Jeremy Bloxham,et al.  Geomagnetic secular variation , 1989, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[29]  Edriss S. Titi,et al.  Numerical Criterion for the Stabilization of Steady States of the Navier-Stokes Equations , 1999 .

[30]  D.S. Bernstein,et al.  Data assimilation for magnetohydrodynamics with a zero-divergence constraint on the magnetic field , 2008, 2008 American Control Conference.

[31]  Edriss S. Titi,et al.  A Data Assimilation Algorithm for the Subcritical Surface Quasi-Geostrophic Equation , 2016, 1607.08574.

[32]  Walter M. Elsasser,et al.  The Hydromagnetic Equations , 1950 .

[33]  Edriss S. Titi,et al.  On a criterion for locating stable stationary solutions to the Navier-Stokes equations , 1987 .

[34]  Edriss S. Titi,et al.  Abridged Continuous Data Assimilation for the 2D Navier–Stokes Equations Utilizing Measurements of Only One Component of the Velocity Field , 2015, 1504.05978.

[35]  Gauthier Hulot,et al.  An Introduction to Data Assimilation and Predictability in Geomagnetism , 2010 .

[36]  Nils Olsen,et al.  A comprehensive model of the quiet‐time, near‐Earth magnetic field: phase 3 , 2002 .

[37]  M. Jolly,et al.  A determining form for the damped driven nonlinear Schrödinger equation—Fourier modes case , 2014, 1406.2626.

[38]  Z. Gruji'c,et al.  Energy cascades in physical scales of 3D incompressible magnetohydrodynamic turbulence , 2012, 1211.1910.

[39]  Edriss S. Titi,et al.  Data Assimilation algorithm for 3D B\'enard convection in porous media employing only temperature measurements , 2015, 1506.08678.

[40]  Alexandre Fournier,et al.  A case for variational geomagnetic data assimilation: insights from a one-dimensional, nonlinear, and sparsely observed MHD system , 2007, 0705.1777.

[41]  P. Schmidt On a magnetohydrodynamic problem of Euler type , 1988 .

[42]  R. Temam,et al.  Asymptotic analysis of the navier-stokes equations , 1983 .

[43]  Yuan Pei,et al.  Nonlinear continuous data assimilation , 2017, Evolution Equations and Control Theory.

[44]  Edriss S. Titi,et al.  A discrete data assimilation scheme for the solutions of the 2D Navier-Stokes equations and their statistics , 2016, 1602.05995.

[45]  V. M. Toi,et al.  UPPER BOUNDS ON THE NUMBER OF DETERMINING MODES, NODES, AND VOLUME ELEMENTS FOR A 3D MAGENETOHYDRODYNAMIC-α MODEL , 2020 .

[46]  A. Stuart,et al.  Data Assimilation: A Mathematical Introduction , 2015, 1506.07825.

[47]  Edriss S. Titi,et al.  Continuous data assimilation for the three-dimensional Navier-Stokes-α model , 2016, Asymptot. Anal..

[48]  Edriss S. Titi,et al.  Discrete data assimilation in the Lorenz and 2D Navier–Stokes equations , 2010, 1010.6105.

[49]  Edriss S. Titi,et al.  A Computational Study of a Data Assimilation Algorithm for the Two-dimensional Navier-Stokes Equations , 2015, 1505.01234.

[50]  D. D. Zeeuw,et al.  Global three‐dimensional MHD simulation of a space weather event: CME formation, interplanetary propagation, and interaction with the magnetosphere , 2000 .

[51]  Edriss S. Titi,et al.  A Discrete Data Assimilation Scheme for the Solutions of the Two-Dimensional Navier-Stokes Equations and Their Statistics , 2016, SIAM J. Appl. Dyn. Syst..

[52]  R. Daley Atmospheric Data Analysis , 1991 .

[53]  R. Temam,et al.  Determination of the solutions of the Navier-Stokes equations by a set of nodal values , 1984 .

[54]  C. Foiaș,et al.  Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension $2$ , 1967 .

[55]  Edriss S. Titi,et al.  Continuous data assimilation for the 2D Bénard convection through velocity measurements alone , 2014, 1410.1767.

[56]  J. L. Lions,et al.  Inéquations en thermoélasticité et magnétohydrodynamique , 1972 .

[57]  Christopher K. Wikle,et al.  Atmospheric Modeling, Data Assimilation, and Predictability , 2005, Technometrics.

[58]  M. U. Altaf,et al.  Downscaling the 2D Bénard convection equations using continuous data assimilation , 2015, Computational Geosciences.

[59]  Edriss S. Titi,et al.  Determining nodes, finite difference schemes and inertial manifolds , 1991 .

[60]  Edriss S. Titi,et al.  Finite determining parameters feedback control for distributed nonlinear dissipative systems - a computational study , 2015, 1506.03709.

[61]  Dean A. Jones,et al.  On the number of determining nodes for the 2D Navier-Stokes equations , 1992 .

[62]  E. Titi,et al.  Title Feedback Control of Nonlinear Dissipative Systems by Finite Determining Parameters-A Reaction-diffusion Paradigm Permalink , 2013 .

[63]  D. Lathrop,et al.  Liquid sodium models of the Earth’s core , 2015, Progress in Earth and Planetary Science.

[64]  L. E. Fraenkel,et al.  NAVIER-STOKES EQUATIONS (Chicago Lectures in Mathematics) , 1990 .