Intrinsic Interleaving Distance for Merge Trees

Merge trees are a type of graph-based topological summary that tracks the evolution of connected components in the sublevel sets of scalar functions. They enjoy widespread applications in data analysis and scientific visualization. In this paper, we consider the problem of comparing two merge trees via the notion of interleaving distance in the metric space setting. We investigate various theoretical properties of such a metric. In particular, we show that the interleaving distance is intrinsic on the space of labeled merge trees and provide an algorithm to construct metric 1-centers for collections of labeled merge trees. We further prove that the intrinsic property of the interleaving distance also holds for the space of unlabeled merge trees. Our results are a first step toward performing statistics on graph-based topological summaries.

[1]  Jesse Freeman,et al.  in Morse theory, , 1999 .

[2]  Vladimir Gurvich,et al.  Characterizing (quasi-)ultrametric finite spaces in terms of (directed) graphs , 2012, Discret. Appl. Math..

[3]  Louis J. Billera,et al.  Geometry of the Space of Phylogenetic Trees , 2001, Adv. Appl. Math..

[4]  David Sanchez,et al.  Cophenetic metrics for phylogenetic trees, after Sokal and Rohlf , 2013, BMC Bioinformatics.

[5]  P. Diaconis,et al.  Matchings and phylogenetic trees. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Alex J. Lemin,et al.  The category of ultrametric spaces is isomorphic to the category of complete, atomic, tree-like, and real graduated lattices LAT* , 2003 .

[7]  Gabriel Cardona,et al.  Nodal distances for rooted phylogenetic trees , 2008, Journal of mathematical biology.

[8]  Alexei J Drummond,et al.  The space of ultrametric phylogenetic trees. , 2014, Journal of theoretical biology.

[9]  Oliver Eulenstein,et al.  Cophenetic Median Trees Under the Manhattan Distance , 2017, BCB.

[10]  Vin de Silva,et al.  Metrics for Generalized Persistence Modules , 2013, Found. Comput. Math..

[11]  Krzysztof Giaro,et al.  On a matching distance between rooted phylogenetic trees , 2013, Int. J. Appl. Math. Comput. Sci..

[12]  D. Robinson,et al.  Comparison of phylogenetic trees , 1981 .

[13]  Ulrich Bauer,et al.  The Reeb Graph Edit Distance is Universal , 2018, SoCG.

[14]  Shawn M. Gomez,et al.  Comparison of phylogenetic trees through alignment of embedded evolutionary distances , 2009, BMC Bioinformatics.

[15]  Ezra Miller,et al.  Polyhedral computational geometry for averaging metric phylogenetic trees , 2012, Adv. Appl. Math..

[16]  Steve Oudot,et al.  Statistical Analysis and Parameter Selection for Mapper , 2017, J. Mach. Learn. Res..

[17]  D. Burago,et al.  A Course in Metric Geometry , 2001 .

[18]  Jack Snoeyink,et al.  Computing contour trees in all dimensions , 2000, SODA '00.

[19]  Valerio Pascucci,et al.  Exploring the evolution of pressure-perturbations to understand atmospheric phenomena , 2017, 2017 IEEE Pacific Visualization Symposium (PacificVis).

[20]  B. Dasgupta,et al.  On distances between phylogenetic trees , 1997, SODA '97.

[21]  Herbert Edelsbrunner,et al.  Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[22]  Fred R. McMorris,et al.  COMPARISON OF UNDIRECTED PHYLOGENETIC TREES BASED ON SUBTREES OF FOUR EVOLUTIONARY UNITS , 1985 .

[23]  Krzysztof Giaro,et al.  Matching Split Distance for Unrooted Binary Phylogenetic Trees , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[24]  Bernd Hamann,et al.  Measuring the Distance Between Merge Trees , 2014, Topological Methods in Data Analysis and Visualization.

[25]  Vin de Silva,et al.  Theory of interleavings on categories with a flow , 2017, 1706.04095.

[26]  Xin He,et al.  On the Linear-Cost Subtree-Transfer Distance between Phylogenetic Trees , 1999, Algorithmica.

[27]  Amit Patel,et al.  Categorified Reeb Graphs , 2015, Discret. Comput. Geom..

[28]  Steve Oudot,et al.  Local Equivalence and Intrinsic Metrics between Reeb Graphs , 2017, SoCG.

[29]  Steve Oudot,et al.  Structure and Stability of the One-Dimensional Mapper , 2015, Found. Comput. Math..

[30]  Ulrich Bauer,et al.  Measuring Distance between Reeb Graphs , 2013, SoCG.

[31]  Bruce Hughes Trees and ultrametric spaces: a categorical equivalence , 2004 .

[32]  O. Dovgoshey,et al.  How rigid the finite ultrametric spaces can be? , 2015, 1511.08133.

[33]  Claudia Landi,et al.  The Edit Distance for Reeb Graphs of Surfaces , 2014, Discret. Comput. Geom..

[34]  Yusu Wang,et al.  FPT-algorithms for computing Gromov-Hausdorff and interleaving distances between trees , 2018, ESA.

[35]  R. Sokal,et al.  THE COMPARISON OF DENDROGRAMS BY OBJECTIVE METHODS , 1962 .

[36]  Leonidas J. Guibas,et al.  Proximity of persistence modules and their diagrams , 2009, SCG '09.

[37]  O. Dovgoshey,et al.  From Isomorphic Rooted Trees to Isometric Ultrametric Spaces , 2018, p-Adic Numbers, Ultrametric Analysis and Applications.

[38]  Yusu Wang,et al.  The JS-graphs of Join and Split Trees , 2014, SoCG.

[39]  R. Ghrist Barcodes: The persistent topology of data , 2007 .

[40]  Gunther H. Weber,et al.  Interleaving Distance between Merge Trees , 2013 .

[41]  Elizabeth Munch,et al.  The ℓ∞-Cophenetic Metric for Phylogenetic Trees as an Interleaving Distance , 2018, Association for Women in Mathematics Series.

[42]  Valerio Pascucci,et al.  Topological Landscapes: A Terrain Metaphor for Scientific Data , 2007, IEEE Transactions on Visualization and Computer Graphics.

[43]  Facundo Mémoli,et al.  Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object Recognition , 2007, PBG@Eurographics.

[44]  Bei Wang,et al.  Convergence between Categorical Representations of Reeb Space and Mapper , 2015, SoCG.

[45]  Ulrich Bauer,et al.  Strong Equivalence of the Interleaving and Functional Distortion Metrics for Reeb Graphs , 2014, SoCG.

[46]  Ulrich Bauer,et al.  An Edit Distance for Reeb Graphs , 2016, 3DOR@Eurographics.

[47]  Michael T. Wolfinger,et al.  Barrier Trees of Degenerate Landscapes , 2002 .

[48]  Gerik Scheuermann,et al.  Visualization of High-Dimensional Point Clouds Using Their Density Distribution's Topology , 2011, IEEE Transactions on Visualization and Computer Graphics.

[49]  Talha Bin Masood,et al.  Edit Distance between Merge Trees , 2020, IEEE Transactions on Visualization and Computer Graphics.

[50]  D. Robinson,et al.  Comparison of weighted labelled trees , 1979 .