Analysis of split-drain MAGFETs

We present fully three-dimensional simulation results of two-drain and three-drain magnetic field-effect transistors (MAGFET), magnetic sensors based on metal-oxide-semiconductor field-effect transistor (MOSFET) structures. By proper development and discretization of the current density equations comprising the nonzero magnetic field components, a two-drain MAGFET is analyzed at both 77 K and 300 K. The discretization scheme is implemented in the general purpose multidimensional device and circuit simulator MINIMOS-NT which is used to investigate the relative sensitivity, the main figure of merit of any magnetic sensor, as a function of the geometric parameters and bias conditions. Besides, the physical modeling of silicon at 77 K and the Hall scattering factors for the silicon inversion layers are discussed. Our simulation results perfectly match the available experimental data. New in-depth knowledge can be obtained by simulating MOSFET structures at 77 K in the presence of an arbitrary magnetic field.

[1]  Dirk Killat,et al.  Measurement and modelling of sensitivity and noise of MOS magnetic field-effect transistors , 1997 .

[2]  S. Kordić,et al.  Integrated silicon magnetic-field sensors , 1986 .

[3]  Sébastien Saez,et al.  Highly sensitive uncooled magnetometers: State of the art. Superconducting magnetic hybrid magnetometers, an alternative to SQUIDs? , 2001 .

[4]  R.S. Popovic,et al.  A CMOS magnetic field sensor , 1983, IEEE Journal of Solid-State Circuits.

[5]  W. C. Dunlap The hall effect and related phenomena , 1961 .

[6]  Roberto Roncella,et al.  An On-Chip Non Invasive Integrated Current Sensing , 2002 .

[7]  D. J. Mapps,et al.  Remote magnetic sensing of people , 2003 .

[8]  Pavel Ripka,et al.  Advances in fluxgate sensors , 2003 .

[9]  John Clarke,et al.  Principles and applications of SQUIDs , 1989, Proc. IEEE.

[10]  C. Jungemann,et al.  Hall factors of Si NMOS inversion layers for MAGFET modeling , 1999 .

[11]  H. Baltes,et al.  Measurement of Hall mobility in n-channel silicon inversion layer , 1987 .

[12]  Pavel Ripka,et al.  Precise magnetic sensors , 2003 .

[13]  Franco Maloberti,et al.  An integrated microsystem for 3-D magnetic field measurements , 2000, IEEE Trans. Instrum. Meas..

[14]  J. Lenz A review of magnetic sensors , 1990, Proc. IEEE.

[15]  A. Nathan,et al.  Numerical modeling of magnetic-field-sensitive semiconductor devices , 1985, IEEE Transactions on Electron Devices.

[16]  A sub-mT cryogenic silicon magnetic sensor , 1998, 28th European Solid-State Device Research Conference.

[17]  S. Selberherr MOS device modeling at 77 K , 1989 .

[18]  J.W.A. von Kluge,et al.  An analytical model of MAGFET sensitivity including secondary effects using a continuous description of the geometric correction factor G , 1999 .

[19]  A. Mahdi,et al.  Some new horizons in magnetic sensing: high-Tc SQUIDs, GMR and GMI materials , 2003 .

[20]  G. Ghibaudo,et al.  Device and circuit cryogenic operation for low-temperature electronics [Book Review] , 2002, IEEE Circuits and Devices Magazine.

[21]  C. Riccobene Multidimensional analysis of galvanomagnetic effects in magnetotransistors , 1995 .

[22]  F. C. Wellstood,et al.  Scanning SQUID microscopy for current imaging , 2001, Microelectron. Reliab..

[23]  Three-Dimensional Analysis of a MAGFET at 300 K and 77 K , 2002, 32nd European Solid-State Device Research Conference.

[24]  Yu. A. Chaplygin,et al.  Experimental research on the sensitivity and noise level of bipolar and CMOS integrated magnetotransistors and judgement of their applicability in weak-field magnetometers , 1995 .

[25]  Meinhard Schilling,et al.  Low-noise biomagnetic measurements with a multichannel dc-SQUID system at 77 K , 2001 .

[26]  M. Missous,et al.  Nano-tesla magnetic field magnetometry using an InGaAs–AlGaAs–GaAs 2DEG Hall sensor , 2003 .

[27]  H. Baltes,et al.  Modeling of a Dual-Drain NMOS Magnetic-Field Sensor , 1985 .

[29]  Temperature dependence performances of fully integrated DC SQUID magnetometers , 2003 .

[30]  R. C. Gallagher,et al.  A Metal-Oxide-Semiconductor (MOS) Hall element , 1966 .

[31]  A. Nathan,et al.  Two-dimensional numerical modeling of magnetic-field sensors in CMOS technology , 1985, IEEE Transactions on Electron Devices.

[32]  K. Seeger,et al.  Semiconductor Physics: An Introduction , 1973 .

[33]  Gerhard Wachutka,et al.  UNIFIED FRAMEWORK FOR THERMAL, ELECTRICAL, MAGNETIC, AND OPTICAL SEMICONDUCTOR DEVICE MODELING , 1991 .

[34]  Ping Keung Ko,et al.  Modelling of split-drain magnetic field-effect transistor (MAGFET) , 1995 .

[35]  L. Rubin Low Temperature Electronics: Physics, Devices, Circuits, and Applications , 2002 .

[36]  P. Giordano,et al.  Si MAGFETs optimized for sensitivity and noise properties , 1992 .

[37]  A. Chovet,et al.  Comparison of noise properties of different magnetic-field semiconductor integrated sensors , 1990 .

[38]  Shoji Kawahito,et al.  A CMOS smart rotary encoder using magnetic sensor arrays , 2003, Proceedings of IEEE Sensors 2003 (IEEE Cat. No.03CH37498).

[39]  H. Baltes,et al.  Integrated semiconductor magnetic field sensors , 1986, Proceedings of the IEEE.

[40]  Shen-Iuan Liu,et al.  CMOS oversampling /spl Delta//spl Sigma/ magnetic-to-digital converters , 2001 .

[41]  D. M. H. Walker,et al.  A practical built-in current sensor for I/sub DDQ/ testing , 2001, Proceedings International Test Conference 2001 (Cat. No.01CH37260).