The behaviour of elastic surface waves polarized in a plane of material symmetry II. Monoclinic media

A general analysis has been given in part I of symmetric elastic surface waves, characterized by the coincidence of the reference plane with a plane of material symmetry. There follows here a detailed account of the propagation of such waves in media with monoclinic, the minimum type of symmetry. The three definite integrals involved in the determination of the surface-wave function, and hence the speed of propagation, are evaluated and an explicit formula is obtained connecting a fourth integral, also required in the calculation of surface-wave properties, to the other three. Illustrative numerical results are presented, referring in all to 12 monoclinic crystals. The continuous transitions between subsonic and supersonic surface-wave propagation, encountered previously in cubic and transversely isotropic elastic media, occur in seven of the materials and thus emerge as a customary feature of symmetric surface waves. Computations of the associated displacement and traction fields and the paths of particles in the boundary of the transmitting body are also described.

[1]  T. Ting Barnett-Lothe tensors and their associated tensors for monoclinic materials with the symmetry plane at x3=0 , 1992 .

[2]  J. Lothe,et al.  On the redundancy of the N matrix of anisotropic elasticity , 1986 .

[3]  J. Lothe,et al.  The behaviour of elastic surface waves polarized in a plane of material symmetry. I. Addendum , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[4]  P. Chadwick Wave propagation in transversely isotropic elastic media - III. The special case a5 = 0 and the inextensible limit , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[5]  P. Chadwick,et al.  The behaviour of elastic surface waves polarized in a plane of material symmetry. III. Orthorhombic and cubic media , 1992, Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences.

[6]  J. Lothe,et al.  Free surface (Rayleigh) waves in anisotropic elastic half-spaces: the surface impedance method , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[7]  P. Chadwick The behaviour of elastic surface waves polarized in a plane of material symmetry I. General analysis , 1990, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[8]  Th. Förster,et al.  Landolt-Börnstein, Zahlenwerte und Funktionen aus Naturwissenschaften und Technik , 1969 .

[9]  S. Clark,et al.  Handbook of physical constants , 1966 .

[10]  P. Chadwick,et al.  Wave propagation in transversely isotropic elastic media - II. Surface waves , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[11]  H. Barlow Surface Waves , 1958, Proceedings of the IRE.

[12]  J. Lothe,et al.  Zero curvature transonic states and free surface waves in anisotropic elastic media , 1990 .

[13]  P. Chadwick,et al.  Foundations of the Theory of Surface Waves in Anisotropic Elastic Materials , 1977 .

[14]  J. Lothe,et al.  Secluded supersonic elastic surface waves , 1991 .

[15]  A. Maradudin,et al.  An Introduction To Applied Anisotropic Elasticity , 1961 .

[16]  G. Kühn Zahlenwerte und funktionen aus naturwissenschaften und technik. Neue Serie, Gruppe III: Kristall‐ und Festkörperphysik Bd. 17: Halbleiter, Teilband g: Physik der nicht‐tetraedrisch gebundenen binären Verbindungen III Herausgeber: O. Madelung, M. Schulz und H. Weiss. Springer‐Verlag Berlin, Heidelber , 1985 .

[17]  T. C. T. Ting,et al.  Modern Theory of Anisotropic Elasticity and Applications , 1992 .