Ab initio calculation of structure and transport properties of He…X (X = Zn, Cd, Hg) van der Waals complexes

The ground state ab initio CCSD(T) potential curves using various basis sets (aug‐cc‐pVXZ‐PP (X = D, T, Q, 5)) is obtained for the dimers of helium with IIb group metals. The effect of the position of the (mid) bond‐functions on the interaction energy is discussed. A Symmetry Adapted Perturbation Theory decomposition of the interaction energy is provided and the trends in the dimer stabilizing and destabilizing contributions are depicted. The spline fitted potential curves are applied together with rigorous statistical formulae in order to obtain the transport coefficients (viscosity coefficients, diffusion coefficients) and the second virial coefficient both for pure constituents and mixtures. The obtained theoretical results are compared with available experimental data. Molecular dynamics is used to obtain reliable values of the diffusion coefficients for all the systems under study. © 2012 Wiley Periodicals, Inc.

[1]  Yongbin Chang,et al.  Transport cross sections for collisions between particles , 2010, Comput. Phys. Commun..

[2]  K. Tang,et al.  A combining rule calculation of the ground state van der Waals potentials of the mercury rare-gas complexes. , 2009, The Journal of chemical physics.

[3]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[4]  E. A. Mason,et al.  Gaseous lon mobility in electric fields of arbitrary strength , 1975 .

[5]  J. V. Lenthe,et al.  State of the Art in Counterpoise Theory , 1994 .

[6]  Sotiris S. Xantheas,et al.  On the importance of the fragment relaxation energy terms in the estimation of the basis set superposition error correction to the intermolecular interaction energy , 1996 .

[7]  Larry A. Viehland,et al.  Velocity distribution functions and transport coefficients of atomic ions in atomic gases by a Gram—Charlier approach , 1994 .

[8]  G. Iglesias-Silva,et al.  Boyle temperatures for pure substances , 2007 .

[9]  Vladimír Lukes,et al.  Relativistic effects in HgHe and HgXe CCSD(T) ground state potential curves. Low‐density viscosity simulations of Hg:Xe mixture , 2011, J. Comput. Chem..

[10]  E. A. Mason,et al.  Interaction universality and scaling laws for interaction potentials between closed-shell atoms and ions , 1990 .

[11]  E. A. Mason Higher Approximations for the Transport Properties of Binary Gas Mixtures. I. General Formulas , 1957 .

[12]  H. Stoll,et al.  Adiabatic potential curves for the Cd2 dimer , 1994 .

[13]  G. A. Petersson,et al.  The CCSD(T) complete basis set limit for Ne revisited. , 2008, The Journal of chemical physics.

[14]  Pengyu Y. Ren,et al.  Polarizable Atomic Multipole Water Model for Molecular Mechanics Simulation , 2003 .

[15]  Cristina Puzzarini,et al.  Systematically convergent basis sets for transition metals. II. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements , 2005 .

[16]  B. Soep,et al.  Mercury-rare gas van der Waals complexes: From the lightest HgHe to the heaviest HgXe , 1985 .

[17]  T. Zwier,et al.  Direct spectroscopic determination of the Hg2 bond length and an analysis of the 2540 Å band , 1988 .

[18]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .

[19]  M. Szczęśniak,et al.  Origins of Structure and Energetics of van der Waals Clusters from ab Initio Calculations , 1994 .

[20]  M. Muir Physical Chemistry , 1888, Nature.

[21]  Vladimír Lukes,et al.  On the Viscosity and Physical Origin of Stability of Weakly Bound Complexes CdZn, HgZn and HgCd , 2007 .

[22]  Jay W. Ponder,et al.  Exploring the similarities between potential smoothing and simulated annealing , 2000 .

[23]  Edward A. Mason,et al.  The Intermolecular Potentials for Some Simple Nonpolar Molecules , 1954 .

[24]  H. Stoll,et al.  Quasirelativistic valence ab initio calculation of the potential energy curves for the Hg–rare gas atom complexes , 2001 .

[25]  T. Dunning,et al.  Benchmark calculations with correlated molecular wavefunctions. XIII. Potential energy curves for He2, Ne2 and Ar2 using correlation consistent basis sets through augmented sextuple zeta , 1999 .

[26]  Robert V. Tompson,et al.  Chapman–Enskog solutions to arbitrary order in Sonine polynomials I: Simple, rigid-sphere gas , 2007 .

[27]  Yue Shi,et al.  Multipole electrostatics in hydration free energy calculations , 2011, J. Comput. Chem..

[28]  Fu-Ming Tao,et al.  Mo/ller–Plesset perturbation investigation of the He2 potential and the role of midbond basis functions , 1992 .

[29]  Vladimír Lukes,et al.  Theoretical Study of the vdW Complex Cd···N2 , 2008 .

[30]  Vladimír Lukes,et al.  On the diffusion coefficients and stability of van der Waals complex Hg… N2 , 2008 .

[31]  A. J. Downs,et al.  Matrix Reactivity of Zn, Cd, or Hg Atoms (M) in the Presence of Silane: Photogeneration and Characterization of the Insertion Product HMSiH3 in a Solid Argon Matrix , 2004 .

[32]  E. Czuchaj,et al.  CCSD(T) calculation of the ground-state potential curves for the Zn-rare gas van der Waals molecules , 2000 .

[33]  E. A. Mason Transport Properties of Gases Obeying a Modified Buckingham (Exp‐Six) Potential , 1954 .

[34]  M. Dolg,et al.  Covalent contributions to bonding in group 12 dimers M2 (Mn = Zn, Cd, Hg) , 1997 .

[35]  Johannes Grotendorst,et al.  Modern methods and algorithms of quantum chemistry , 2000 .

[36]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[37]  Edmond P. F. Lee,et al.  Interaction potentials and spectroscopy of Hg+.Rg and Cd+.Rg and transport coefficients for Hg+ and Cd+ in Rg (Rg=He-Rn). , 2006, The Journal of chemical physics.

[38]  D. Woon Benchmark calculations with correlated molecular wave functions. V. The determination of accurate abinitio intermolecular potentials for He2, Ne2, and Ar2 , 1994 .

[39]  Guntram Rauhut,et al.  Energy-consistent pseudopotentials for group 11 and 12 atoms: adjustment to multi-configuration Dirac–Hartree–Fock data , 2005 .

[40]  R. Sonntag,et al.  Fundamentals of Statistical Thermodynamics , 1966 .

[41]  C. Pouchan,et al.  An ab initio study of the electronic spectrum of Zn2 including spin–orbit coupling , 2005 .

[42]  Enrico Clementi,et al.  Methods and techniques in computational chemistry : METECC-95 , 1995 .