Factorization of a 768-Bit RSA Modulus

This paper reports on the factorization of the 768-bit number RSA-768 by the number field sieve factoring method and discusses some implications for RSA.

[1]  D. Coppersmith Solving homogeneous linear equations over GF (2) via block Wiedemann algorithm , 1994 .

[2]  Peter L. Montgomery,et al.  Square roots of products of algebraic numbers , 1994 .

[3]  Adi Shamir,et al.  Factoring Estimates for a 1024-Bit RSA Modulus , 2003, ASIACRYPT.

[4]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[5]  Carl Pomerance,et al.  The Development of the Number Field Sieve , 1994 .

[6]  J. Dixon Asymptotically fast factorization of integers , 1981 .

[7]  Arjen K. Lenstra,et al.  Lattice sieving and trial division , 1994, ANTS.

[8]  Carl Pomerance,et al.  The Quadratic Sieve Factoring Algorithm , 1985, EUROCRYPT.

[9]  Stefania Cavallar,et al.  Strategies in Filtering in the Number Field Sieve , 2000, ANTS.

[10]  Shi Bai,et al.  Polynomial selection for the number field sieve , 2011 .

[11]  J. Franke,et al.  CONTINUED FRACTIONS AND LATTICE SIEVING , 2022 .

[12]  Arjen K. Lenstra,et al.  Computational methods in public key cryptology , 2002 .

[13]  J. Pollard The lattice sieve , 1993 .

[14]  Arjen K. Lenstra,et al.  A World Wide Number Field Sieve Factoring Record: On to 512 Bits , 1996, ASIACRYPT.

[15]  Emmanuel Thomé,et al.  Subquadratic Computation of Vector Generating Polynomials and Improvement of the Block Wiedemann Algorithm , 2002, J. Symb. Comput..

[16]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[17]  D. Coppersmith Solving linear equations over GF(2): block Lanczos algorithm , 1993 .

[18]  Robert P. Backstrom Table errata: “A method of factoring and the factorization of ₇” [Math. Comp. 29 (1975), 183–205; MR 51 #8017] by M. A. Morrison and J. Brillhart , 1980 .

[19]  A. K. Lenstra,et al.  The factorization of the ninth Fermat number , 1993 .

[20]  Brian Murphy,et al.  Modelling the Yield of Number Field Sieve Polynominals , 1998, ANTS.

[21]  Thorsten Kleinjung,et al.  On polynomial selection for the general number field sieve , 2006, Math. Comput..

[22]  Arjen K. Lenstra,et al.  A Kilobit Special Number Field Sieve Factorization , 2007, ASIACRYPT.

[23]  Phong Q. Nguyen A Montgomery-Like Square Root for the Number Field Sieve , 1998, ANTS.

[24]  J. Brillhart,et al.  A method of factoring and the factorization of , 1975 .

[25]  Carl Pomerance,et al.  A Tale of Two Sieves , 1998 .

[26]  Leonard M. Adleman,et al.  Factoring numbers using singular integers , 1991, STOC '91.

[27]  J. Couveignes Computing a square root for the number field sieve , 1993 .

[28]  James L. Massey,et al.  Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.

[29]  Jeff Gilchrist,et al.  Factorization of a 512-Bit RSA Modulus , 2000, EUROCRYPT.

[30]  Arjen K. Lenstra,et al.  Algorithms in Number Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[31]  T. Kleinjung Cofactorisation strategies for the number field sieve and an estimate for the sieving step for factoring 1024-bit integers , 2022 .

[32]  A. K. Lenstra,et al.  Addendum: “The factorization of the ninth Fermat number” [Math. Comp. 61 (1993), no. 203, 319–349; MR1182953 (93k:11116)] , 1995 .