Charge transport in micas: The kinetics of FeII/III electron transfer in the octahedral sheet

The two principal FeII/III electron exchange reactions underlying charge transport in the octahedral sheet of ideal end-member annite were modeled using a combination of ab initio calculations and Marcus electron transfer theory. A small polaron model was applied which yielded electron hopping activation energies that agree well with the limited available experimental data. A small ab initio cluster model successfully reproduced several important structural, energetic, and magnetic characteristics of the M1 and M2 Fe sites in the annite octahedral sheet. The cluster enabled calculation of the internal reorganization energy and electronic coupling matrix elements for the M2–M2 and M1–M2 electron transfer reactions. The M2–M2 electron transfer is symmetric with a predicted forward/reverse electron hopping rate of 106 s−1. The M1–M2 electron transfers are asymmetric due to the higher ionization potential by 0.46 eV of FeII in the M1 site. The electronic coupling matrix elements for these reactions are predic...

[1]  Stephen F. Nelsen,et al.  Estimation of inner shell Marcus terms for amino nitrogen compounds by molecular orbital calculations , 1987 .

[2]  D. Rancourt,et al.  Mechanisms and crystal chemistry of oxidation in annite: Resolving the hydrogen-loss and vacancy reactions , 2001 .

[3]  D. Rancourt,et al.  Determination of cis and trans Fe2+ populations in 2M1 muscovite by Mössbauer spectroscopy , 1998 .

[4]  Rudolph A. Marcus,et al.  On the Theory of Oxidation‐Reduction Reactions Involving Electron Transfer. I , 1956 .

[5]  P. Jeffrey Hay,et al.  Gaussian basis sets for molecular calculations. The representation of 3d orbitals in transition‐metal atoms , 1977 .

[6]  B. Dupré,et al.  Electrical properties of pure and titanium-doped hematite single crystals, in the basal plane, at low oxygen pressure , 1990 .

[7]  Richard E. Stanton,et al.  Corresponding Orbitals and the Nonorthogonality Problem in Molecular Quantum Mechanics , 1967 .

[8]  D. Rancourt,et al.  Determination of accurate (super [4]) Fe (super 3+) , (super [6]) Fe (super 3+) , and (super [6]) Fe (super 2+) site populations in synthetic annite by Moessbauer spectroscopy , 1994 .

[9]  D. Chateigner,et al.  Oxidation-reduction mechanism of iron in dioctahedral smectites: II. Crystal chemistry of reduced Garfield nontronite , 2000 .

[10]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[11]  I. Swainson,et al.  Magnetism of synthetic and natural annite mica: ground state and nature of excitations in an exchange-wise two-dimensional easy-plane ferromagnet with disorder , 1994 .

[12]  E. Clementi,et al.  Electric-field induced intramolecular electron transfer in spiro .pi.-electron systems and their suitability as molecular electronic devices. A theoretical study , 1990 .

[13]  J L Beeby,et al.  Physics of amorphous materials , 1984 .

[14]  V. Drits,et al.  A Model for the Mechanism of Fe3+ to Fe2+ Reduction in Dioctahedral Smectites , 2000 .

[15]  J. Stucki,et al.  Infrared study of reduced and reduced-reoxidized ferruginous smectite , 2002 .

[16]  G. Redhammer Characterisation of synthetic trioctahedral micas by Mössbauer spectroscopy , 1998 .

[17]  S. Elliott,et al.  The Physics and Chemistry of Solids , 1956, Nature.

[18]  A. Wachters,et al.  Gaussian Basis Set for Molecular Wavefunctions Containing Third‐Row Atoms , 1970 .

[19]  P. A. Cox The Electronic Structure And Chemistry Of Solids , 1987 .

[20]  K. Rosso,et al.  Ab Initio Calculation of Homogeneous Outer Sphere Electron Transfer Rates: Application to M(OH2)63+/2+Redox Couples , 2000 .

[21]  R. D. Shannon Dielectric polarizabilities of ions in oxides and fluorides , 1993 .

[22]  J. Stucki,et al.  Role of Structural Hydrogen in the Reduction and Reoxidation of Iron in Nontronite , 1985 .

[23]  E. Ferrow Mössbauer and X-ray studies on the oxidation of annite and ferriannite , 1987 .

[24]  M. Dupuis,et al.  An ab initio model of electron transport in hematite (α-Fe2O3) basal planes , 2003 .

[25]  N. Morimoto,et al.  Trioctahedral one-layer micas. I. Crystal structure of a synthetic iron mica , 1964 .

[26]  D. Sherman Molecular orbital (SCF-Xα-SW) theory of metal-metal charge transfer processes in minerals , 1987 .

[27]  A. Schäfer,et al.  Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr , 1994 .

[28]  G. W. Bailey,et al.  Sorption and Abiotic Redox Transformation of Nitrobenzene at the Smectite-Water Interface. , 2001, Journal of colloid and interface science.

[29]  A. T. Davidson,et al.  Hopping Electrical Conduction and Thermal Breakdown in Natural and Synthetic Mica , 1968, December 1.

[30]  R. Strens,et al.  Charge-transfer in ferromagnesian silicates: The polarized electronic spectra of trioctahedral micas , 1972, Mineralogical Magazine.

[31]  D. Chateigner,et al.  Oxidation-reduction mechanism of iron in dioctahedral smectites: I. Crystal chemistry of oxidized reference nontronites , 2000 .

[32]  T. Holstein,et al.  Studies of polaron motion: Part II. The “small” polaron , 1959 .

[33]  M. Dyar A review of Moessbauer data on trioctahedral micas; evidence for tetrahedral Fe (super 3+) and cation ordering , 1987 .

[34]  D. Rancourt Mössbauer spectroscopy of minerals , 1994 .

[35]  A. J. Bosman,et al.  Small-polaron versus band conduction in some transition-metal oxides , 1970 .

[36]  Udo Schwertmann,et al.  Iron in Soils and Clay Minerals , 1987 .

[37]  A. Beran,et al.  Spectroscopic and structural properties of synthetic micas on the annite-siderophyllite binary: Synthesis, crystal structure refinement, Mössbauer, and infrared spectroscopy , 2000 .

[38]  S. McKeever,et al.  Spectroscopic characterization of minerals and their surfaces , 1990 .

[39]  White,et al.  Implementation of gradient-corrected exchange-correlation potentials in Car-Parrinello total-energy calculations. , 1994, Physical review. B, Condensed matter.

[40]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[41]  M. Meunier,et al.  Electrical conduction in biotite micas , 1983 .

[42]  J. Coey,et al.  Magnetic order in silicate minerals (invited) , 1982 .

[43]  J. Nowotny,et al.  Electrical Properties of Oxide Materials , 1996, Key Engineering Materials.

[44]  T. Holstein,et al.  Studies of polaron motion: Part II. The “small” polaron , 1959 .

[45]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[46]  J. Sanz,et al.  NMR study of micas. I. Distribution of Fe/sup 2+/ ions on the octahedral sites , 1977 .

[47]  W. Bleam Atomic theories of phyllosilicates: Quantum chemistry, statistical mechanics, electrostatic theory, and crystal chemistry , 1993 .

[48]  R. Fitzpatrick,et al.  Clays: Controlling the Environment , 1995 .

[49]  R. Hazen The effect of cation substitutions on the physical properties of trioctahedra micas. , 1971 .