Mechanisms of oxide scale formation on yttrium-alloyed Mo–Si–B containing fine-grained microstructure

[1]  B. Yuan,et al.  Formation and oxidation resistance of germanium modified silicide coating on Nb based in situ composites , 2014 .

[2]  Ping Zhang,et al.  Effect of Al content on the structure and oxidation resistance of Y and Al modified silicide coatings prepared on Nb–Ti–Si based alloy , 2013 .

[3]  J. Das,et al.  Transient stage oxidation behavior of Mo76Si14B10 alloy at 1150 °C , 2013 .

[4]  D. Schliephake,et al.  Effect of Ti (Macro-) Alloying on the High-Temperature Oxidation Behavior of Ternary Mo–Si–B Alloys at 820–1,300 °C , 2013, Oxidation of Metals.

[5]  D. Schliephake,et al.  A Study on Effect of Reactive and Rare Earth Element Additions on the Oxidation Behavior of Mo–Si–B System , 2013, Oxidation of Metals.

[6]  D. Schliephake,et al.  Effect of Yttrium Alloying on Intermediate to High-Temperature Oxidation Behavior of Mo-Si-B Alloys , 2013, Metallurgical and Materials Transactions A.

[7]  P. Berthod,et al.  On the oxidation mechanism of niobium-base in situ composites , 2012 .

[8]  V. Melinte,et al.  Photopolymerization experiments and properties of some urethane/urea methacrylates tested in dental composites , 2012 .

[9]  R. Ritchie,et al.  On the fracture toughness of fine-grained Mo-3Si-1B (wt.%) alloys at ambient to elevated (1300 °C) temperatures , 2012 .

[10]  H. Christ,et al.  High temperature oxidation of Mo–Si–B alloys: Effect of low and very low oxygen partial pressures , 2010 .

[11]  H. Christ,et al.  Effect of Zr Addition on the High-Temperature Oxidation Behaviour of Mo–Si–B Alloys , 2010 .

[12]  J. Perepezko The Hotter the Engine, the Better , 2009, Science.

[13]  R. Sakidja,et al.  Transient oxidation of Mo–Si–B alloys: Effect of the microstructure size scale , 2009 .

[14]  A. K. Suri,et al.  A study of hot deformation behavior and microstructural characterization of Mo–TZM alloy , 2009 .

[15]  S. Roy,et al.  Oxidation behaviour of the Mo–Si–B and Mo–Si–B–Al alloys in the temperature range of 700–1300 °C , 2007 .

[16]  Richard E. Thompson,et al.  Strain Measurements of Silicon Dioxide Microspecimens by Digital Imaging Processing , 2006 .

[17]  M. Akinc,et al.  Isothermal Oxidation Behavior of Mo‐Si‐B Intermetallics at 1450°C , 2005 .

[18]  R. Ritchie,et al.  Optimization of Mo-Si-B intermetallic alloys , 2005 .

[19]  E. Opila Variation of the Oxidation Rate of Silicon Carbide with Water‐Vapor Pressure , 2004 .

[20]  K. Kumar,et al.  High-temperature compression behavior of Mo–Si–B alloys , 2004 .

[21]  H. Kestler,et al.  Characterization of an industrially processed Mo-based silicide alloy , 2004 .

[22]  D. R. Johnson,et al.  Oxidation behavior of multiphase Mo–Si–B alloys , 2004 .

[23]  M. Kramer,et al.  Thermal expansion behavior of intermetallic compounds in the Mo–Si–B system , 2004 .

[24]  D. Dimiduk,et al.  Mo-Si-B Alloys: Developing a Revolutionary Turbine-Engine Material , 2003 .

[25]  N. Nomura,et al.  Thermal expansion, strength and oxidation resistance of Mo/Mo5SiB2 in-situ composites at elevated temperatures , 2003 .

[26]  D. R. Johnson,et al.  Effects of microstructure on the oxidation behavior of multiphase Mo–Si–B alloys , 2003 .

[27]  F. Aldinger,et al.  Microstructural Changes in Liquid‐Phase‐Sintered Silicon Carbide during Creep in an Oxidizing Environment , 2003 .

[28]  D. Dimiduk,et al.  Oxidation mechanisms in Mo-reinforced Mo5SiB2(T2)–Mo3Si alloys , 2002 .

[29]  D. Dimiduk,et al.  Oxidation behavior of αMo–Mo3Si–Mo5SiB2 (T2) three phase system , 2002 .

[30]  M. Kramer,et al.  A Mo–Si–B intermetallic alloy with a continuous α-Mo matrix , 2002 .

[31]  S. Nemat-Nasser,et al.  A unified constitutive model for strain-rate and temperature dependent behavior of molybdenum , 2001 .

[32]  K. Ito,et al.  Physical and mechanical properties of single crystals of the T2 phase in the Mo–Si–B system , 2001 .

[33]  D. Petti,et al.  Oxidation and Volatilization of TZM Alloy in Air , 2000 .

[34]  R. Ritchie,et al.  Ambient to high temperature fracture toughness and fatigue-crack propagation behavior in a Mo–12Si–8.5B (at.%) intermetallic , 2000 .

[35]  M. Akinc,et al.  Oxide scale formation and isothermal oxidation behavior of Mo–Si–B intermetallics at 600–1000°C , 1999 .

[36]  Giovanni Carlotti,et al.  Elastic properties of silicon dioxide films deposited by chemical vapour deposition from tetraethylorthosilicate , 1997 .

[37]  M. Akinc,et al.  Oxidation Behavior of Boron‐Modified Mo5Si3 at 800°–1300°C , 1996 .

[38]  Y. Gogotsi,et al.  Oxidation of yttria- and alumina-containing dense silicon nitride ceramics , 1993 .

[39]  F. Riley,et al.  Oxygen mobility in silicon dioxide and silicate glasses: a review , 1992 .

[40]  C. Torardi,et al.  Structure and properties of Y5Mo2O12 and Gd5Mo2O12: Mixed valence oxides with structurally equivalent molybdenum atoms , 1985 .

[41]  A. Evans,et al.  Oxidation induced stresses and some effects on the behavior of oxide films , 1983 .

[42]  E. Irene Silicon oxidation studies: A revised model for thermal oxidation , 1983 .

[43]  E. P. EerNisse,et al.  Stress in thermal SiO2 during growth , 1979 .

[44]  R. L. Barns,et al.  Correlation of the thermal expansion coefficients of rare earth and transition metal oxides and fluorides , 1977 .

[45]  A. S. Grove,et al.  General Relationship for the Thermal Oxidation of Silicon , 1965 .

[46]  A. Revesz The defect structure of grown silicon dioxide films , 1965 .

[47]  F. C. Nix,et al.  The Thermal Expansion of Pure Metals. II: Molybdenum, Palladium, Silver, Tantalum, Tungsten, Platinum, and Lead , 1942 .